首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Calibration relationships were derived for cartilage proteoglycan subunit (PGS) that relate the inverse z-average hydrodynamic radius (Rs) and the weight-average Mr (Mw) to the partition coefficient (Kav.) for PGS when chromatographed on a Sepharose CL-2B column. PGS isolated from chick limb-bud chondrocyte cell cultures was fractionated chromatographically into eight pools, for which Mw and Rs were determined by total-intensity and dynamic light-scattering measurements. These data were found to be related to Kav. through the following empirical equations: log Mw = -(1.65 +/- 0.27)Kav. +(6.58 +/- 0.08); log Rs = -(0.69 +/- 0.04)Kav. +(2.75 +/- 0.01). Application of these relationships to the chromatographic data led to Mw = 1.48 X 10(6) and Rs = 38.7 nm (387 A) for the unfractionated specimens compared with values of Mw = 1.46 X 10(6) and Rs = 38.2 nm (382 A) determined by light-scattering. Our results were found to be consistent with previously proposed phenomenological models for the gel-filtration mechanism. Application of these calibration relationships to Kav. for several unfractionated specimens led to predicted values of Mw and Rs that are accurate to within 10%.  相似文献   

2.
Ligand binding reactions and the relation between redox state and ligand binding in the hexa-heme nitrite reductase of Wolinella succinogenes have been studied using laser flash photolysis. On a picosecond time scale, a rapid excursion was observed corresponding to the breaking and reforming of an iron histidine bond. With the CO derivative, a geminate reaction was observed with a rate of 3 ns-1. On a nanosecond time scale, no slower geminate reactions were observed. For the cyanide derivative, no geminate reactions were observed at either time scale. The second order reaction of CO with the enzyme had a time course consisting of two distinct components. This time course changed in form as the enzyme came to equilibrium with CO, and the slower rebinding component was replaced by a faster rebinding component. It is suggested that CO binding enhances reduction of a heme with an unusually low redox potential and opens the structure of the active site to allow a faster second order reaction of CO. The proportion of the geminate CO reaction was unchanged, consistent with changes relatively remote from the ligand binding site. The second order reactions of cyanide also showed that redox effects influence its rebinding reaction. Adding cyanide to the CO complex of nitrite reductase showed that the two ligands have distinct heme binding sites.  相似文献   

3.
4.
Wolinella succinogenes grown with nitrate as terminal electron acceptor contains two nitrite reductases as measured with the donor viologen radical, one in the cytoplasm and the other integrated in the cytoplasmic membrane. The fumarate-grown bacteria contain only the membraneous species.The isolated membraneous enzyme consists of a single polypeptide chain (M r 63,000) carrying 4 hemeC groups and probably an iron-sulphur cluster as prosthetic groups. The enzyme amounts to about 1% of the total membrane protein.The isolated enzyme catalyses the reduction of nitrite to ammonium without accumulation of significant amounts of intermediates or alternative products. The Michaelis constant for nitrite was 0.1 mM and the turnover number of the hemeC 1.5 · 105 electrons per min at 37°C.The viologen-reactive site of the enzyme in the membrane is oriented towards the cytoplasm. When the isolated enzyme is incorporated into liposomes, the viologen-as well as the nitrite-reactive site is exposed to thooutside.The cytoplasmic membrane contains a second hemeC protein (M r 22,000) which may represent a cytochrome c.Abbreviations NQNO 2-(n-nonyl)-4-hydroxyquinoline-N-oxide - MES 2-(N-morpholino)ethanesulfonate - MOPS 3-(N-morpholino)propanesulfonate - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonate - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - MK menaquinone  相似文献   

5.
It is shown that the oxidized form of the hexa-haem nitrite reductase of Wolinella succinogenes exists in two structurally and functionally distinct forms, termed 'resting' and 'redox-cycled'. The nitrite reductase as initially isolated, termed 'resting', has five low-spin ferrihaem groups and one high-spin ferrihaem group. The reduction of these haem groups by Na2S2O4 occurs in two kinetically and spectrally distinct phases. In the slower phase the haem groups are reduced by dithionite with a limiting rate of 4 s-1. If the enzyme is re-oxidized after reduction with dithionite or with methyl viologen, the resulting ferric form, termed 'redox-cycled', possesses only low-spin haem centres and a rate of reduction in the slower phase that is no longer limited. In the resting form of the enzyme the high-spin ferrihaem group is weakly exchange-coupled to a low-spin haem group. It is proposed that in the redox-cycled form the exchange coupling occurs between two low-spin ferric haem groups. This change in spin state allows a more rapid rate of electron transfer to the coupled pair.  相似文献   

6.
The cytochrome c nitrite reductase complex (NrfHA) is the terminal enzyme in the electron transport chain catalysing nitrite respiration of Wolinella succinogenes. The catalytic subunit NrfA is a pentahaem cytochrome c containing an active site haem group which is covalently bound via the cysteine residues of a unique CWTCK motif. The lysine residue serves as the axial ligand of the haem iron. The other four haem groups of NrfA are bound by conventional haem-binding motifs (CXXCH). The nrfHAIJ locus was restored on the genome of the W. succinogenes DeltanrfAIJ deletion mutant by integration of a plasmid, thus enabling the expression of modified alleles of nrfA and nrfI. A mutant (K134H) was constructed which contained a nrfA gene encoding a CWTCH motif instead of CWTCK. NrfA of strain K134H was found to be synthesized with five bound haem groups, as judged by matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry. Its nitrite reduction activity with reduced benzyl viologen was 40% of the wild-type activity. Ammonia was formed as the only product of nitrite reduction. The mutant did not grow by nitrite respiration and its electron transport activity from formate to nitrite was 5% of that of the wild-type strain. The predicted nrfI gene product is similar to proteins involved in system II cytochrome c biogenesis. A mutant of W. succinogenes (stopI) was constructed that contained a nrfHAIJ gene cluster with the nrfI codons 47 and 48 altered to stop codons. The NrfA protein of this mutant did not catalyse nitrite reduction and lacked the active site haem group, whereas the other four haem groups were present. Mutant (K134H/stopI) which contained the K134H modification in NrfA in addition to the inactivated nrfI gene had essentially the same properties as strain K134H. NrfA from strain K134H/stopI contained five haem groups. It is concluded that NrfI is involved in haem attachment to the CWTCK motif in NrfA but not to any of the CXXCH motifs. The nrfI gene is obviously dispensable for maturation of a modified NrfA protein containing a CWTCH motif instead of CWTCK. Therefore, NrfI might function as a specific haem lyase that recognizes the active site lysine residue of NrfA. A similar role has been proposed for NrfE, F and G of Escherichia coli, although these proteins share no overall sequence similarity to NrfI and belong to system I cytochrome c biogenesis, which differs fundamentally from system II.  相似文献   

7.
Reductive titrations of the dissimilatory hexa-haem nitrite reductase, Wolinella succinogenes, with methyl viologen semiquinone (MV) and sodium dithionite, have been followed at room temperature by absorption, natural (CD) and magnetic circular dichroism (MCD) spectroscopies and at liquid helium temperature by electron paramagnetic resonance (EPR) and MCD spectroscopies. The nature of the reduced enzyme depends on the reductant employed. At room temperature a single high-spin ferrous haem, observed by MCD after reduction with MV, is absent from dithionite reduced samples. It is suggested that a product of dithionite oxidation becomes bound with high affinity to the reduced state of the enzyme causing the ferrous haem to become low-spin. The site occupied is likely to be the substrate binding haem. The course of the titration with MV at room temperature shows the reduction of high-spin ferric to high-spin ferrous haem. Since the EPR spectrum reveals the presence of an unusual high-low spin ferric haem pair in the oxidised state we propose that the active site of the enzyme is a novel haem pair consisting of one high (5-coordinate) and one low-spin (6 coordinate) haem, magnetically coupled and possibly bridged by a histidinate ligand.  相似文献   

8.
The bacterium Wolinella succinogenes produces a nitrite reductase enzyme that can be purified to homogeneity in high yield by a combination of detergent extraction, hydroxyapatite chromatography and Mr fractionation. Nitrite reductase activity is found to be present in both a high- and a low-Mr fraction. The high-Mr fraction has been shown to consist of the low-Mr nitrite reductase enzyme associated with a hydrophobic 'binding protein'. The amino acid composition for both proteins is reported. The nitrite reductase enzyme shows spectral characteristics indicative of the presence of c-type haem groups. Measurements at 610 nm indicate the presence of some high-spin haem groups at neutral pH. This haem subgroup undergoes a pH-linked high-spin - low-spin transition at alkaline pH. Approximately two of the six haem groups present within the enzyme bind CO with low affinity (KD = 0.4 mM). The enzyme also shows a range of redox activities with various inorganic reagents. The enzyme has been shown to exhibit dithionite reductase, oxygen reductase and CO2 reductase activities.  相似文献   

9.
10.
The nature of the heme centers in the hexa-heme dissimilatory nitrite reductase from the bacterium Wolinella succinogenes has been investigated with EPR and magnetic circular dichroism spectroscopy. The EPR spectrum of the ferric enzyme is complex showing, in addition to magnetically isolated low-spin ferric hemes with g values of 2.93, 2.3 and 1.48, two sets of signals at g = 10.3, 3.7 and 4.8, 3.21, which we assign to two pairs of exchange coupled hemes. The MCD spectra show that the isolated hemes are bis-histidine coordinated and that there is one high-spin ferric heme. The exchange coupling is lost on treatment with SDS.  相似文献   

11.
The reduction kinetics of both the resting and redox-cycled forms of the nitrite reductase from the anaerobic rumen bacterium Wolinella succinogenes were studied by stopped-flow reaction techniques. Single-turnover reduction of the enzyme by dithionite occurs in two kinetic phases for both forms of the enzyme. When the resting form of the enzyme is subjected to a single-turnover reduction by dithionite, the slower of the two kinetic phases exhibits a hyperbolic dependence of the rate constant on the square root of the reductant concentration, the limiting value of which (approximately 4 s-1) is assigned to a slow internal electron-transfer process. In contrast, when the redox-cycled form of the enzyme is reduced by dithionite in a single-turnover experiment, both kinetic phases exhibit linear dependences of the rate on the square root of dithionite concentration, with associated rate constants of 150 M-1/2.s-1 and 6 M-1/2.s-1. Computer simulations of both the reduction processes shows that no unique set of rate constants can account for the kinetics of both forms, although the kinetics of the redox-cycled species is consistent with a much enhanced rate of internal electron transfer. Under turnover conditions the time course for reduction of the enzyme, in the presence of millimolar levels of nitrite and 100 mM-dithionite, is extremely complex. A working model for the mechanism of the turnover activity of the enzyme is proposed which very closely describes the reaction kinetics over a wide range of substrate concentrations, as shown by computer simulation. The similarity in the action of the nitrite reductase enzyme and mammalian cytochrome c oxidase is commented upon.  相似文献   

12.
Hexaheme nitrite reductases purified to homogeneity from Escherichia coli K-12 and Wolinella succinogenes were studied by low-temperature EPR spectroscopy. In their isolated states, the two enzymes revealed nearly identical EPR spectra when measured at 12 K. Both high-spin and low-spin ferric heme EPR resonances with g values of 9.7, 3.7, 2.9, 2.3 and 1.5 were observed. These signals disappeared upon reduction by dithionite. Reaction of reduced enzyme with nitrite resulted in the formation of ferrous heme-NO complexes with distinct EPR spectral characteristics. The heme-NO complexes formed with the two enzymes differed, however, in g values and line-shapes. When reacted with hydroxylamine, reduced enzymes also showed the formation of ferrous heme-NO complexes. These results suggested the involvement of an enzyme-bound NO intermediate during the six-electron reduction of nitrite to ammonia catalyzed by these two hexaheme nitrite reductases. Heme proteins that can either expose bound NO to reduction or release it are significant components of both assimilatory and dissimilatory metabolisms of nitrate. The different ferrous heme-NO complexes detected for the two enzymes indicated, nevertheless, their subtle variation in heme reactivity during the reduction reaction.  相似文献   

13.
It was shown that kcat for the benzyl viologen cation (BV+)-N2O oxidoreductase activity of nitrous oxide reductase from Wolinella succinogenes was 2-3 times greater at high N2O concentrations than at low. This effect of N2O on kcat exhibited a titration curve implicating a single secondary binding site for N2O with a Kd of 130-200 microM (Km with respect to N2O is about 2.5 microM). This work represents the first evidence of an apparently allosteric kinetic effect among nitrous oxide reductases. Its possible cause is discussed. BV+ was generated in these kinetic studies by addition of sub-stoichiometric amounts of dithionite. This means of reduction proved to be superior to the photochemical generation of BV+ that had been used previously with the enzyme. Mass spectrometric measurements suggested that the M(r) of the subunit of the enzyme is about 95,500 rather than 88,000.  相似文献   

14.
Nitrous oxide reductase from Wolinella succinogenes, an enzyme containing one heme c and four Cu atoms/subunit of Mr = 88,000, was studied by electron paramagnetic resonance (EPR) at 9.2 GHz from 6 to 80 K. In the oxidized state, low spin ferric cytochrome c was observed with gz = 3.10 and an axial Cu resonance was observed with g parallel = 2.17 and g perpendicular = 2.035. No signals were detected at g values greater than 3.10. For the Cu resonance, six hyperfine lines each were observed in the g parallel and g perpendicular regions with average separations of 45.2 and 26.2 gauss, respectively. The hyperfine components are attributed to Cu(I)-Cu(II) S = 1/2 (half-met) centers. Reduction of the enzyme with dithionite caused signals attributable to heme c and Cu to disappear; exposure of that sample to N2O for a few min caused the reappearance of the g = 3.10 component and a new Cu signal with g parallel = 2.17 and g perpendicular = 2.055 that lacked the simple hyperfine components attributed to a single species of half-met center. The enzyme lost no activity as the result of this cycle of reduction and reoxidation. EPR provided no evidence for a Cu-heme interaction. The EPR detectable Cu in the oxidized and reoxidized forms of the enzyme comprised about 23 and 20% of the total Cu, respectively, or about one spin/subunit. The enzyme offers the first example of a nitrous oxide reductase which can have two states of high activity that present very different EPR spectra of Cu. These two states may represent enzyme in two different stages of the catalytic cycle.  相似文献   

15.
Cytochrome c nitrite reductase catalyzes the 6-electron reduction of nitrite to ammonia. This second part of the respiratory pathway of nitrate ammonification is a key step in the biological nitrogen cycle. The x-ray structure of the enzyme from the epsilon-proteobacterium Wolinella succinogenes has been solved to a resolution of 1.6 A. It is a pentaheme c-type cytochrome whose heme groups are packed in characteristic motifs that also occur in other multiheme cytochromes. Structures of W. succinogenes nitrite reductase have been obtained with water bound to the active site heme iron as well as complexes with two inhibitors, sulfate and azide, whose binding modes and inhibitory functions differ significantly. Cytochrome c nitrite reductase is part of a highly optimized respiratory system found in a wide range of Gram-negative bacteria. It reduces both anionic and neutral substrates at the distal side of a lysine-coordinated high-spin heme group, which is accessible through two different channels, allowing for a guided flow of reaction educt and product. Based on sequence comparison and secondary structure prediction, we have demonstrated that cytochrome c nitrite reductases constitute a protein family of high structural similarity.  相似文献   

16.
Pterin derivatives were extracted from formate dehydrogenase and from polysulfide reductase of Wolinella succinogenes and converted to 6-carboxypterin. The amounts of 6-carboxypterin were consisted with the molybdenum content of the enzymes. The bis(carboxamidomethyl) derivatives of the cofactors showed absorption spectra that were identical with that of the corresponding molybdopterin guanine dinucleotide derivative (cam MGD). After hydrolysis of the derivatives with nucleotide pyrophosphatase in the presence of alkaline phosphatase, guanosine was formed together with a compound showing the properties of dephospho-bis(carboxamidomethyl)-molybdopterin. It is conluded that both formate dehydrogenase and polysulfide reductase of W. succinogenes contain molybdopterin guanine dinucleotide.Abbreviations MPT molybdopterin - MGD molybdopterin guanine dinucleotide - cam MPT bis(carboxyamidomethyl)-molybdopterin - cam MGD bis(carboxyamidomethyl)-molybdopterin guanine dinucleotide  相似文献   

17.
The electron-transport chain that catalyzes nitrite respiration with formate in Wolinella succinogenes consists of formate dehydrogenase, menaquinone and the nitrite reductase complex. The latter catalyzes nitrite reduction by menaquinol and is made up of NrfA and NrfH, two c-type cytochromes. NrfA is the catalytic subunit; its crystal structure is known. NrfH belongs to the NapC/NirT family of membrane-bound c-type cytochromes and mediates electron transport between menaquinol and NrfA. It is demonstrated here by MALDI MS that four heme groups are attached to NrfH. A Delta nrfH deletion mutant of W. succinogenes was constructed by replacing the nrfH gene with a kanamycin-resistance gene cartridge. This mutant did not form the NrfA protein, probably because of a polar effect of the mutation on nrfA expression. The nrfHAIJ gene cluster was restored by integration of an nrfH-containing plasmid into the genome of the Delta nrfH mutant. The resulting strain had wild-type properties with respect to growth by nitrite respiration and nitrite reductase activity. A mutant (stopH) that contained the nrfHAIJ locus with nrfH modified by two artificial stop codons near its 5' end produced wild-type amounts of NrfA in the absence of the NrfH protein. NrfA was located exclusively in the soluble cell fraction of the stopH mutant, indicating that NrfH acts as the membrane anchor of the NrfHA complex in wild-type bacteria. The stopH mutant did not grow by nitrite respiration and did not catalyze nitrite reduction by formate, indicating that the electron transport is strictly dependent on NrfH. The NrfH protein seems to be an unusual member of the NapC/NirT family as it forms a stable complex with its redox partner protein NrfA.  相似文献   

18.
The fumarate reductase complex of the anaerobic bacterium Wolinella succinogenes catalyzes the electron transfer from menaquinol to fumarate. Two structural genes coding for subunits of the enzyme have been cloned in Escherichia coli. The genes were isolated from a lambda EMBL3 phage gene bank by immunological screening and subcloned in an expression vector. The genes frdA and frdB, which encode the FAD protein (Frd A, Mr 79,000) and the iron-sulfur protein (Frd B, Mr 31,000) of the fumarate reductase complex, were cloned together with a W. succinogenes promoter. The gene order was promoter-frdA-frdB. The FAD protein and the iron-sulfur protein were expressed in the correct molar mass in E. coli from the clones. The identity of the frdA gene and the suggested polarity were confirmed by comparing the amino-terminal sequence of the Frd A protein with that predicted from the 5'-terminal nucleotide sequence of frdA. The frdA and frdB genes are present only once in the genome. A region downstream of frdB, possibly a gene encoding cytochrome b of the fumarate reductase complex, hybridizes with a second site in the genome.  相似文献   

19.
20.
Nitrous oxide reductase from Wolinella succinogenes was tested for benzyl viologen cation (BV+)-chlorinated methane oxidoreductase activity, using di-, tri- and tetra-chloromethanes, and for the inhibition of BV+-N2O oxidoreductase activity by these chloromethanes. No BV+-chlorinated methane oxidoreductase activity was detected. Any such activity, if it exists, must be less than 0.1% of the BV+-N2O oxidoreductase activity of the enzyme. Inhibition of the BV+-N2O oxidoreductase activity by dichloromethane was detected and was apparently reversible and non-competitive, as is the case with the small metal-ligand type inhibitors of the enzyme (e.g. acettlene, azide, cyanide and carbon monoxide). Trichloromethane was a weaker inhibitor and inhibition was not detected with tetrachloromethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号