首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupling of biodegradable corncob and plastic carrier was optimized in continuous-flow solid-phase denitrification systems for enhancing simultaneously removal of nitrogen and organics in agricultural runoff. In compared with preposition of plastic carriers and mixed distribution method, it was demonstrated that the preposition of corncobs simultaneously enhanced nitrate (6.64 ± 1.35 mg L?1 day ?1) and organics removal (6.33 ± 1.44 mg L?1 day?1) at a hydraulic retention time (HRT) of 6 h. The operation performance could be further enhanced with extension of HRT to 12 h. The dominant genera found in corncob were denitrifiers for nitrate reduction (Bosea, Simplicispira, Desulfovibrio, Klebsiella, etc.) and fermentative bacteria (Pleomorphomonas, Actinotalea, Opitutus, Cellulomonas, Bacteroides, etc.) responsible for corncob degrading to simple organics for other denitrifiers. However, much lower and different denitrifiers abundances (Bradyrhizobium, Acinetobacter, Bacillus, etc.) exhibited on plastic filler than those of corncob. It well explained that the biofilm on plastic carrier was mainly related with organics removal while the biofilm on corncobs inclined to effectively remove nitrate, and simultaneous removal of nitrogen and organics could be achieved in coupling carriers system with preposition of biodegradable corncob.  相似文献   

2.
This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and AzoarcusThauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.  相似文献   

3.
To enhance the startup and efficient simultaneous nitrification and denitrification for sewage treatment, sequencing batch biofilm reactors (SBBRs) partially coupled with rice husk were established and operated under various intermittent micro-aeration cycles (IMCs) and COD/N ratios under oxygen-limiting intermittent aeration conditions. Experimental results showed that the increase of IMCs with non-aeration/micro-aeration mode of (8 h/4 h)1 to (2 h/1 h)4 in a 12 h-cycle accelerated the startup performance and improved NH4+–N and COD removal. NH4+–N, TN and COD removal efficiencies were 98.7?±?0.9, 89.2?±?5.2 and 82.9?±?6.7% at COD/N ratio of 7.6 with the highest IMCs in SBBR, respectively. Higher TN removal efficiencies of 87.2?±?4.0 and 58.1?±?3.5% were also achieved at lower COD/N ratio of 5.6 and 2.8, respectively. In SBBRs with various IMCs, facultative denitrifier like genus Acinetobacter and solid-phase denitrifier belonging to Comamonadaceae family were enriched. However, aerobic denitrifiers with function of heterotrophic nitrification like Paracoccus were favored to enrich under higher IMCs condition, and more anoxic denitrifiers like sulfur-based autotrophic denitrifier Thiothrix and heterotrophic denitrifiers like Pseudomonas and Methyloversatilis were observed at lower IMCs condition. Autotrophic nitrifier (Nitrosomonas and Nitrosipra) and heterotrophic nitrifiers both contributed to the efficient nitrification.  相似文献   

4.
The diamondback moth Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae) is an herbivorous specialist on Brassicaceae species. Brassicas spp. plants developed a range of defenses (chemical, physical, and morphological) to prevent herbivores attack. In this study, we reported the antixenotic and antibiotic effects of outermost layer of two species of epicuticular wax of Brassicaceae, Brassica oleracea L. var. “Santo Antônio,” and Hybrid Kope F1 100MX, on larvae and adult of P. xylostella. In the choice experiment, P. xylostella adults showed an oviposition preference for collard cultivars Santo Antônio (control) and Hybrid Kope F1 100MX with wax removal. In the no-choice experiment, oviposition was 6.4 times higher in the Hybrid Kope F1 100MX with wax removal than without wax removal. There were significant differences among larvae feeding on leaf disks of Hybrid Kope F1 100MX in the treatments with (65.3 mg) and without wax removal (23.5 mg). The net reproduction rate (R 0 ), and intrinsic (rm) and finite rates of increase (λ) of P. xylostella in the cv. Santo Antônio were bigger in the treatment without wax removal (R 0  = 50.4, rm = 0.23 and λ = 1.26) than treatment with wax removal (R 0  = 28.5, rm = 0.20 and λ = 1.22). However, only the R 0 value was affected by mechanical wax removal in the Hybrid Kope F1 100MX (with wax removal R 0  = 43.3 and without wax removal R 0  = 30.8). In conclusion, the results indicate that collard’s wax is important to accessibility and development of P. xylostella, and its removal changes the resistance of collard’s varieties to P. xylostella.  相似文献   

5.
6.
Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4 +–N was impaired in biofilm systems when influent NH4 +–N was less than 0.35 mg L?1 or NH4 +–N loading rate of less than 7.51 mg L?1 day?1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.  相似文献   

7.
Nitrogen (N) is the key factor limiting photosynthetic processes and crop yield. Little is known about the response of leaf gas exchange of spring triticale (Triticosecale Wittm.) to N supply. The effect of N fertilizers on different gas exchange variables, i.e., photosynthetic rate (A), transpiration rate (E), stomatal conductance (g s), instantaneous water use efficiency (WUE) and maximum quantum yield of photosystem II (PSII) (F v/F m), chlorophyll index (SPAD, soil–plant analysis development), and the relationship of these variables with yield were studied in spring triticale grown under field conditions. Six treatments of N—0, 90, 180, 90 + 30, 90 + 30 + 30 kg ha?1 (applied as ammonium nitrate, AN) and one treatment of N 90 + 30 + 30 kg ha?1 (applied as urea ammonium nitrate solution, UAN) were compared. The analysis of variance showed that throughout the triticale growing season, N fertilization had significant effects on A, WUE, g s and SPAD. On average, N fertilizer application increased A values by 14–70%. E and F v/F m values were not influenced by N fertilization levels. The effect of growth stage and year on gas exchange variables and F v/F m and SPAD was found to be significant. At different growth stages, A values varied and maximum ones were reached at BBCH 31–33 (decimal code system of growth stages) and BBCH 59. With aging, values of A decreased independently of N fertilization level. The gas exchange variables were equally affected by both fertilizer forms. The interplay among grain yield, leaf gas exchange variables, F v/F m and SPAD of spring triticale was estimated. The statistical analysis showed that grain yield positively and significantly correlated with A and SPAD values throughout the growing season.  相似文献   

8.

Objectives

To develop a xylose-nonutilizing Escherichia coli strain for ethanol production and xylose recovery.

Results

Xylose-nonutilizing E. coli CICIM B0013-2012 was successfully constructed from E. coli B0013-1030 (pta-ack, ldhA, pflB, xylH) by deletion of frdA, xylA and xylE. It exhibited robust growth on plates containing glucose, arabinose or galactose, but failed to grow on xylose. The ethanol synthesis pathway was then introduced into B0013-2012 to create an ethanologenic strain B0013-2012PA. In shaking flask fermentation, B0013-2012PA fermented glucose to ethanol with the yield of 48.4 g/100 g sugar while xylose remained in the broth. In a 7-l bioreactor, B0013-2012PA fermented glucose, galactose and arabinose in the simulated corncob hydrolysate to 53.4 g/l ethanol with the yield of 48.9 g/100 g sugars and left 69.6 g/l xylose in the broth, representing 98.6% of the total xylose in the simulated corncob hydrolysate.

Conclusions

By using newly constructed strain B0013-2012PA, we successfully developed an efficient bioprocess for ethanol production and xylose recovery from the simulated corncob hydrolysate.
  相似文献   

9.
Phycobiliproteins, light-harvesting pigments found in cyanobacteria and in some eukaryotic algae, have numerous commercial applications in food, cosmetic, and pharmaceutical industries. Colorant production from cyanobacteria offers advantages over their production from higher plants, as cyanobacteria have fast growth rate and high photosynthetic efficiency and require less space. In this study, three cyanobacteria strains were studied for phycobiliprotein production and the influence of sodium nitrate, potassium nitrate and ammonium chloride on the growth and phycobiliprotein composition of the strains were evaluated. In the batch culture period of 12 days, Phormidium sp. and Pseudoscillatoria sp. were able to utilize all tested nitrogen sources; however, ammonium chloride was the best nitrogen source for both strains to achieve maximum growth rate μ?=?0.284?±?0.03 and μ?=?0.274?±?0.13 day?1, chlorophyll a 16.2?±? 0.5 and 12.2?±? 0.2 mg L?1, and phycobiliprotein contents 19.38?±?0.09 and 19.99?±?0.14% of dry weight, whereas, for Arthrospira platensis, the highest growth rate of μ?=?0.304?±?0.0 day?1, chlorophyll a 19.1?±?0.5 mg L?1, and phycobiliprotein content of 22.27?±?0.21% of dry weight were achieved with sodium nitrate. The phycocyanin from the lyophilized cyanobacterial biomass was extracted using calcium chloride and food grade purity (A620/A280 ratio >?0.7) was achieved. Furthermore, phycocyanin was purified using two-step chromatographic method and the analytical grade purity (A620/A280 ratio >?4) was attained. SDS-PAGE demonstrated the purity and presence of two bands corresponding to α- and β-subunits of the C-phycocyanin. The results showed that Phormidium sp. and Pseudoscillatoria sp. could be good candidates for phycocyanin production.  相似文献   

10.
Helicobacter pylori is an infectious agent commonly associated with gastrointestinal diseases. The use of probiotics to treat this infection has been documented, however, their potential antimicrobial metabolites have not yet been investigated. In the present study, the effect of reuterin produced by Lactobacillus reuteri on H. pylori growth and virulence gene expression was evaluated. It was observed that reuterin caused significant (P < 0.05) H. pylori growth inhibition at concentrations from 0.08 to 20.48 mM, with minimal inhibitory concentrations (MICs) of 20.48 mM for H. pylori ATCC700824 and 10.24 mM for H. pylori ATCC43504. In a reuterin bacterial killing assay, it was observed that half of the MIC value for H. pylori (ATCC700824) significantly (P < 0.01) reduced colony numbers from 5.65 ± 0.35 to 3.78 ± 0.35 Log10 CFU/mL after 12 h of treatment and then increased them to 5.25 ± 0.23 Log10 CFU/mL at 24 h; at its MIC value (20.48 mM), reuterin abrogated (P < 0.01) H. pylori (ATCC700824) growth after 20 h of culture. In addition, reuterin significantly (P < 0.01) reduced H. pylori (ATCC 43504) colony numbers from 5.65 ± 0.35 to 4.1 ± 0.12 Log10 CFU/mL from 12 to 24 h of treatment and abrogated its growth at its MIC value (10.24 mM), after 20 h of treatment. Reuterin did not alter normal human gastric Hs738.St/Int cell viability at the concentrations tested for H. pylori strains. Furthermore, 10 μM reuterin was shown to significantly (P < 0.01) reduce mRNA relative expression levels of H. pylori virulence genes vacA and flaA at 3 h post-treatment, whose effect was higher at 6 h post-treatment, as measured by RT-qPCR. The observed direct antimicrobial effect and the downregulation of expression of virulence genes on H. pylori by reuterin may contribute to the understanding of the mechanisms of action of probiotics against H. pylori.  相似文献   

11.
A previous study has demonstrated that in sandy sediment the marine yabby (Trypaea australiensis) stimulated benthic metabolism, nitrogen regeneration and nitrification, but did not stimulate denitrification, as the intense bioturbation of the yabbies eliminated anoxic microzones amenable to denitrification. It was hypothesised that organic matter additions would alleviate this effect as the buried particles would provide anoxic microniches for denitrifiers. To test this hypothesis a 55-day microcosm (75 cm × 36 cm diameter) experiment, comprising four treatments: sandy sediment (S), sediment + yabbies (S + Y), sediment + A. marina litter (S + OM) and sediment + yabbies + A. marina litter (S + Y + OM), was conducted. Trypaea australiensis significantly stimulated benthic metabolism, nitrogen regeneration, nitrification and nitrate reduction in the presence and the absence of litter additions. In contrast, the effects of litter additions alone were more subtle, developed gradually and were only significant for sediment oxygen demand. However, there was a significant interaction between yabbies and litter with rates of total nitrate reduction and denitrification being significantly greater in the S + Y + OM than all other treatments, presumably due to the decaying buried litter providing anoxic micro-niches suitable to nitrate reduction. In addition, both T. australiensis and litter significantly decreased rates of DNRA and its contribution to nitrate reduction.  相似文献   

12.
Tomato (Solanum lycopersicum L.) being a widespread and most commonly consumed vegetable all over the world has an important economic value for its producers and related food industries. It is a serious matter of concern as its production is affected by arsenic present in soil. So, the present study, investigated the toxicity of As(V) on photosynthetic performance along with nitrogen metabolism and its alleviation by exogenous application of nitrate. Plants were grown under natural conditions using soil spiked with 25 mg and 20 mM, As(V) and nitrate, respectively. Our results revealed that plant growth indices, photosynthetic pigments, and other major photosynthetic parameters like net photosynthetic rate and maximum quantum efficiency (F v /F m ) of photosystem II (PSII) were significantly (P ≤ 0.05) reduced under As(V) stress. However, nitrate application significantly (P ≤ 0.05) alleviated As(V) toxicity by improving the aforesaid plant responses and also restored the abnormal shape of guard cells. Nitrogen metabolism was assessed by studying the key nitrogen-metabolic enzymes. Exogenous nitrate revamped nitrogen metabolism through a major impact on activities of NR, NiR, GS and GOGAT enzymes and also enhanced the total nitrogen and NO content while malondialdehyde content, and membrane electrolytic leakage were remarkably reduced. Our study suggested that exogenous nitrate application could be considered as a cost effective approach in ameliorating As(V) toxicity.  相似文献   

13.
Understanding genetic connectivity is fundamental for ecosystem-based management of marine resources. Here we investigate the metapopulation structure of the edible sea cucumber Holothuria edulis Lesson, 1830 across Okinawa Island, Japan. This species is of economic and ecological importance and is distributed from the Red Sea to Hawai‘i. We examined sequence variation in fragments of mitochondrial cytochrome oxidase subunit I (COI) and 16S ribosomal RNA (16S), and nuclear histone (H3) at six locations across Okinawa Island. We found higher haplotype diversity for mtDNA (COI: Hd = 0.69 and 16S: Hd = 0.67) and higher heterozygosity of nDNA (H3: H E = 0.39) in populations from the west coast of Okinawa compared to individuals from populations on the east coast (COI: Hd = 0.40; 16S: Hd = 0.21; H3: H E = 0.14). Overall population structure was significant (AMOVA results for COI: Φ ST = 0.49, P < 0.0001; 16S: Φ ST = 0.34, P < 0.0001; H3: Φ ST = 0.12, P < 0.0001). One population in the east, Uruma, showed elevated pairwise Φ ST values in comparisons with all other sites and a marked reduction of genetic diversity (COI: Hd = 0.25 and 16S: Hd = 0.24), possibly as a consequence of a shift to a more dominant asexual reproduction mode. Recent reports have indicated that coastal development in this area influences many marine organisms, and ecosystem degradation in this location could cause the observed decrease of genetic diversity and isolation of H. edulis in Uruma. Our study should provide valuable data to help with the urgently needed management of sea cucumber populations in Okinawa, and indicates particular attention needs to be paid to vulnerable locations.  相似文献   

14.
Heavy metals–organics mixture pollution is increasingly concerned and simultaneous removal of organic pollutants and heavy metals is becoming significant. In this study, a strain was isolated from the sediment of a tannery effluent outfalls, which can remove o-dichlorobenzene (o-DCB) and Cr(VI) simultaneously. The bacterial isolate was identified as Serratia marcescens by the 16S rRNA gene sequences. The strain removed about 90% of o-DCB and more than 80% of Cr(VI) at the concentration of 1.29 g L?1 o-DCB and 20 mg L?1 Cr(VI). In the presence of concomitant pollutant o-DCB, the optimal pH (8.0) and temperature (30 °C) were determined for Cr(VI) removal. Changes of the bacterial cells and intracellular black Cr(III) sediments were observed by the TEM auxiliary analysis. The results of the FTIR spectroscopy analysis indicated that hydroxyl, amide and polysaccharides were involved in the process of Cr(VI) removal.  相似文献   

15.
Harmonia axyridis (Pallas) is a coccinellid of Asian origin that has recently invaded substantial parts of Europe and is suspected to affect native coccinellid populations through intraguild predation and competition for food. Previous work has shown that two species from the Calvia genus appeared to be well protected against H. axyridis predation. To deepen our understanding on chemical protection of Calvia spp. and the predation risk by H. axyridis, we tested for susceptibility and palatability of Calvia spp. and H. axyridis eggs against predation by H. axyridis neonate larvae. Results show that eggs of C. quatuordecimguttata were mostly not eaten by H. axyridis, while eggs of the congeneric C. decemguttata were found to be largely unprotected against predation by the invasive coccinellid. We also observed that H. axyridis first instars successfully cannibalized on conspecific eggs. Removing the surface chemicals from C. quatuordecimguttata eggs resulted in significantly reduced protection from being preyed upon by H. axyridis, while applying these extracts onto C. decemguttata and H. axyridis eggs resulted in increased protection against H. axyridis larvae. The importance of surface chemicals in the interactions between H. axyridis and native coccinellids was confirmed by GC–MS analysis, showing a high diversity of hydrocarbons located on the surface of C. quatuordecimguttata eggs, i.e. more than twice as many when compared to C. decemguttata. Survival of H. axyridis larvae feeding on eggs of C. quatuordecimguttata, C. decemguttata or conspecific eggs, from which surface chemicals were removed by washing them with hexane, was not different from survival on unwashed eggs.  相似文献   

16.
After the accident at the Fukushima Dai-ichi Nuclear Power Plant in 2011, high activities of radiocaesium have been reported in wild mushrooms in Japan. Fungi play an important role in the dynamics of radiocaesium in forest ecosystems. We examined the contents of caesium (Cs), rubidium (Rb), and potassium (K) in the mycelium of 15 isolates of ectomycorrhizal (EM) fungi and nine isolates of saprotrophic (SA) fungi in a synthetic medium with either ammonium chloride (NH4Cl) or sodium nitrate (NaNO3), supplemented with 1 ppm caesium chloride and rubidium chloride. The mycelia were harvested after 8 weeks of incubation, and the contents of Cs, Rb, and K were measured by inductively coupled plasma mass spectrometry. The dry weight of the mycelium in the medium with NH4 was significantly higher than that with NO3, although some EM species, Hebeloma, Astraeus, Scleroderma, and Pisolithus, grew well in the medium with NO3. Among SA species, Crucibulum and Cyathus grew in the medium with NO3. The uptakes of Cs, Rb, and K by Suillus, Pisolithus, and Rhizopogon were higher than that in other EM and SA species when they grew on the medium with NH4, while the uptakes of these elements by Astraeus and Scleroderma were higher than those by other species grown on the medium with NO3. The content of Rb was positively correlated with Cs (r = 0.85, p < 0.001) and K (r = 0.51, p < 0.001). The accumulation of Cs, Rb, and K was differently affected by the N source and fungal species.  相似文献   

17.
The objective of this study was to evaluate ethanol production and bioadsorption with four red seaweeds, Gelidium amansii, Gracilaria verrucosa, Kappaphycus alvarezii and Eucheuma denticulatum. To produce ethanol, thermal acid hydrolysis, enzymatic saccharification and fermentation was carried out. After pretreatment, 38.5, 39.9, 31.0 and 27.5 g/L of monosaccharides were obtained from G. amansii, G. verrucosa, K. alvarezii and E. denticulatum, respectively. Ethanol fermentation was performed with Saccharomyces cerevisiae KCCM 1129 adapted to 80 g/L galactose. The ethanol productions by G. amansii, G. verrucosa, K. alvarezii and E. denticulatum were 18.8 g/L with Y EtOH = 0.49, 19.1 g/L with Y EtOH = 0.48, 14.5 g/L with Y EtOH = 0.47 and 13.0 g/L with Y EtOH = 0.47, respectively. The waste seaweed slurries after the ethanol fermentation were reused to adsorb Cd(II), Pb(II) and Cu(II). Using langmuir isotherm model, Cu(II) had the highest affinity for waste seaweeds with the highest q max and electronegativity values among three heavy metals.  相似文献   

18.
Acetaldehyde strongly binds to the wine preservative SO2 and, on average, causes 50–70 mg l?1 of bound SO2 in red and white wines, respectively. Therefore, a reduction of bound and total SO2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l?1), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24–48 mg l?1). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14–34 mg l?1). Addition of SO2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO2 added to must, corresponding to an increase of 0.47 mg of bound SO2 per mg of SO2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO2 concentrations.  相似文献   

19.
The objective of this work was to assess and compare the removal efficiency of paracetamol and salicylic acid from aqueous medium by a microalgae-based treatment, using either Chlorella vulgaris or Tetradesmus obliquus. Moreover, considering microalgae application in wastewater treatment, the influence of these pharmaceuticals in the algal nutrient removal capacity was evaluated. The removal of paracetamol by T. obliquus (>40 %) was larger than by C. vulgaris (>21 %) in batch culture, and this was also observed for salicylic acid (>93 % by T. obliquus and >25 % by C. vulgaris). Both strains removed nutrients (phosphate and nitrate) almost completely by the end of the batch culture, but T. obliquus showed the highest efficiency at the steady state conditions of the semicontinuous culture. In spite of this, under the flocculants here tested, the efficiency in the recovery of biomass was much higher for C. vulgaris. These results highlight the importance of strain selection in the application of microalgae for wastewater treatment and, particularly, for the removal of pharmaceuticals.  相似文献   

20.
This study aimed at evaluating the phytoplankton adaptive strategies of phytoplankton in a shallow urban eutrophic tropical reservoir, Garças Reservoir, over temporal and vertical scales. Samples were taken monthly for eight consecutive years (1997–2004) at a fixed set of depths in the water column. At the beginning, the reservoir was eutrophic with 20% of its surface covered by water hyacinth Eichhornia crassipes (phase I). Then, in phase II, water hyacinth grew to cover up to 40–70% of the surface. In phase III it was mechanically removed. After macrophyte removal the limnology changed, drastically. This removal modified nutrient dynamics, drastically reduced water transparency, and increased both primary production and phytoplankton biomass, the latter impeding light penetration. Phytoplankton life strategies during water hyacinth dominance (phase II) responded promptly to this environmental disturbance in conditions of low dissolved oxygen (DO) and soluble reactive phosphorus (SRP) and high free CO2 values. After macrophyte removal, a permanent cyanobacterial monoculture was established. Phase I was dominated basically by Sphaerocavum brasiliense, mainly during the stratified months, represented by non-flagellate colonies, the M functional group, S-strategists, and greater biomass of species with high maximal axial linear dimension (MLD) and cell volumes. Phase II was dominated by Cryptomonas curvata, C. erosa, C. marssonii, Trachelomonas sculpta, T. volvocinopsis, T. kelloggii, T. hispida, Peridinium spp., Aphanocapsa spp., and Aphanothece spp., and was represented by unicellular flagellate species, Y, W2, K, LO functional groups, and C-strategists, greater biomass of species with intermediate MLD and cell volumes. Phase III was dominated by Microcystis aeruginosa, M. panniformis, Cylindrospermopsis raciborskii, Planktothrix agardhii, and Aphanizomenon gracile, represented by non-flagellate colonies, M, S, H1, S functional groups, and S and R-strategists, greater biomass of species with high MLD and cell volumes (>50 μm and >104 μm3, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号