首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological nitrogen (N) fixation is the primary source of “new” N to unmanaged ecosystems, and recent analyses suggest that terrestrial N inputs via free-living N fixation may be more important than previously assumed. This may be particularly true in some tropical rain forests, where free-living fixation could outpace symbiotic N fixation to represent the dominant source of new N inputs. However, our understanding of the controls over free-living N fixation in tropical rain forests remains poor, which directly constrains our ability to predict how N cycling will respond to changing environmental conditions. Although both phosphorus (P) and molybdenum (Mo) availability have been shown to limit free-living N fixation rates in the tropics, few studies have simultaneously explored P versus Mo limitation or the potential importance of P × Mo interactions. Here, an archived set of foliar, litter, and soil samples from a Costa Rican tropical rain forest provided an opportunity to simultaneously assess the relative strength of P versus Mo relationships with free-living N fixation rates. We also conducted a short-term, full-factorial (P × Mo) litter incubation experiment to directly assess nutrient limitation, allowing us to explore P and Mo controls over free-living N fixation rates using both observational and experimental approaches. We previously showed that N fixation rates were positively correlated with P concentrations in all substrates and, using the archived samples, we now show that Mo concentrations correlated with N fixation only in canopy leaves (where total Mo concentrations were extremely low). Likewise, fertilization with P alone (and not Mo) stimulated leaf litter N fixation rates. Thus, our results suggest that P availability dominantly controls free-living N fixation at this site, and when taken with data from other studies, our results suggest that attempts to identify “the nutrient” that limits N fixation in “the tropics” may be misguided. Rather, nutrient controls over free-living N fixation appear to be more nuanced—and the true nature of nutrient limitation to N fixation likely varies over a variety of scales across the vast tropical rain forest biome.  相似文献   

2.
The processes of speciation and macroevolution of root nodule bacteria (rhizobia), based on deep rearrangements of their genomes and occurring in the N2-fixing symbiotic system, are reconstructed. At the first stage of rhizobial evolution, transformation of free-living diazotrophs (related to Rhodopseudomonas) to symbiotic N2-fixers (Bradyrhizobium) occurred due to the acquisition of the fix gene system, which is responsible for providing nitrogenase with electrons and redox potentials, as well as for oxygen-dependent regulation of nitrogenase synthesis in planta, and then of the nod genes responsible for the synthesis of the lipo-chitooligosaccharide Nod factors, which induce root nodule development. The subsequent rearrangements of bacterial genomes included (1) increased volume of hereditary information supported by species, genera (pangenome), and individual strains; (2) transition from the unitary genome to a multicomponent one; and (3) enhanced levels of bacterial genetic plasticity and horizontal gene transfer, resulting in formation of new genera—of which Mesorhizobium, Rhizobium, and Sinorhizobium are the largest—and of over 100 species. Rhizobial evolution caused by development and diversification of the Nod factor-synthesizing systems may result in either relaxed host specificity range (transition of Bradyrhizobium from autotrophic to symbiotrophic carbon metabolism in interaction with a broad spectrum of legumes) or narrowed host specificity range (transition of Rhizobium and Sinorhizobium to “altruistic” interaction with legumes of the galegoid clade). Reconstruction of the evolutionary pathway from symbiotic N2-fixers to their free-living ancestors makes it possible to initiate the studies based on up-to-date genome screening technologies and aimed at the issues of genetic integration of organisms into supraspecies complexes, ratios of the macro- and microevolutionary mechanisms, and development of cooperative adaptations based on altruistic interaction between the symbiotic partners.  相似文献   

3.
The stinkbug Plautia stali Scott is a notorious agricultural pest whose posterior midgut hosts specific bacteria essential for its growth and survival, highlighted as an experimental model for symbiosis studies. Some symbiotic bacteria of P. stali are cultivable, found free-living in and acquired from the environment, and, furthermore, some free-living environmental bacteria are potentially capable of establishing symbiotic association with P. stali. In this context, it is expected that such environmental bacteria may occasionally contaminate and infect the experimental insects maintained in the laboratory, which could potentially affect the functional analyses of the symbiosis. Here we report that such contamination events do occur under a laboratory rearing conditions for P. stali. When symbiont-deprived newborn nymphs from surface-sterilized eggs were reared in sterilized plastic containers with autoclaved water, most of them died as nymphs presumably as a result of aposymbiosis, but only a small fraction could attain adulthood and the adult insects were all infected with γ-proteobacteria allied to Pantoea and Enterobacter. A variety of bacteria, mainly Bacillus and also Pantoea and Enterobacter, were detected from peanuts and soybeans provided as food for P. stali. Autoclaving of peanuts and soybeans eradicated these bacteria but negatively affected the host survival, whereas ethanol sterilization of peanuts and soybeans removed Pantoea and Enterobacter, but not Bacillus, without negative effects on the host survival. On the basis of these results, we established a practical procedure for aseptic rearing of P. stali, which will enable reliable and strict analyses of host–symbiont interactions in the model symbiotic system.  相似文献   

4.
Iron (Fe) is a key element for all living systems, especially for photosynthetic organisms because of its important role in the photosynthetic electron transport chain. Fe limitation in cyanobacteria leads to several physiological and morphological changes. However, the overall metabolic responses to Fe limitation are still poorly understood. In this study, we integrated elemental, stoichiometric, macromolecular, and metabolomic data to shed light on the responses of Synechocystis sp. PCC 6803, a non-N2-fixing freshwater cyanobacterium, to Fe limitation. Compared to Synechocystis growing at nutrient replete conditions, Fe-limited cultures had lower growth rates and amounts of chlorophyll a, RNA, RNA:DNA, C, N, and P, and higher ratios of protein:RNA, C:N, C:P, and N:P, in accordance with the growth rate hypothesis which predicts faster growing organisms will have decreased biomass RNA contents and C:P and N:P ratios. Fe-limited Synechocystis had lower amounts Fe, Mn, and Mo, and higher amount of Cu. Several changes in amino acids of cultures growing under Fe limitation suggest nitrogen limitation. In addition, we found substantial increases in stress-related metabolites in Fe-limited cyanobacteria such antioxidants. This study represents an advance in understanding the stoichiometric, macromolecular, and metabolic strategies that cyanobacteria use to cope with Fe limitation. This information, moreover, may further understanding of changes in cyanobacterial functions under scenarios of Fe limitation in aquatic ecosystems.  相似文献   

5.
The legume plant Medicago truncatula Gaertn. can establish a symbiotic interaction with Sinorhizobium meliloti. One of the most limiting factors for symbiosis is phosphate (P) deficiency. Therefore, legumes and their symbiotic partners, rhizobia, have developed mechanisms to adapt to P restriction. In the non-symbiotic state, plants would up-regulate flavonoid biosynthesis via increasing the expression of chalcone synthase (chs), catalyzing the first step of flavonoid synthesis. Simultaneously, bacterial quorum sensing (QS) pathway can regulate the expression of certain genes involved in symbiotic functions of bacteria in response to P availability as well as bacterial population. Since both flavonoids and QS signaling molecules (N-acyl homoserine lactones, AHL) play important roles in the rhizobia-legume symbiosis, we evaluated these processes in the symbiotic state under different P concentrations and bacterial populations. In this study, by using real-time PCR and HPLC, we showed the expression of pt1 (phosphate transporter 1) and chs as well as luteolin production increased, in a time dependent manner, in plants following P limitation. Nod gene inducing flavonoids can up-regulate the bacterial QS pathway which results in an increase in AHL production, possibly to enhance symbiotic behaviors of rhizobia. It has been estimated that there is a feedback loop from bacterial AHL to flavonoid production pathway in legume plants.  相似文献   

6.
The amoeba, Mayorella viridis contains several hundred symbiotic green algae in its cytoplasm. Transmission electron microscopy revealed strong resemblance between symbiotic algae from M. viridis the symbiotic Chlorella sp. in the perialgal vacuoles of Paramecium bursaria and other ciliates. Although it is thought that the M. viridis and symbiotic algae could be model organisms for studying endosymbiosis between protists and green algae, few cell biological observations of the endosymbiosis between M. viridis and their symbiotic algae have been published. In this study, we characterized the specificity of endosymbiotic relationships between green algae and their hosts. Initially, we established stable cultures of M. viridis in KCM medium by feeding with Chlorogonium capillatum. Microscopic analyses showed that chloroplasts of symbiotic algae in M. viridis occupy approximately half of the algal cells, whereas those in P. bursaria occupy entire algal cells. The symbiotic algae in P. bursaria contain several small spherical vacuoles. The labeling of actin filaments using Acti-stain? 488 Fluorescent Phalloidin revealed no relationship between host actin filaments and symbiotic algal localization, although the host mitochondria were localized around symbiotic algae. Symbiotic algae from M. viridis could infect algae-free P. bursaria but could not support P. bursaria growth without feeding, whereas the original symbiotic algae of P. bursaria supported its growth without feeding. These data indicated the specificity of endosymbiotic algae relationships in M. viridis and P. bursaria.  相似文献   

7.
Ferriferous savannas, also known as cangas in Brazil, are nutrient-impoverished ecosystems adapted to seasonal droughts. These ecosystems support distinctive vegetation physiognomies and high plant diversity, although little is known about how nutrient and water availability shape these ecosystems. Our study was carried out in the cangas from Carajás, eastern Amazonia, Brazil. To investigate the N cycling and drought adaptations of different canga physiognomies and compare the findings with those from other ecosystems, we analyzed nutrient concentrations and isotope ratios (δ13C and δ15N) of plants, litter, and soils from 36 plots distributed in three physiognomies: typical scrubland (SB), Vellozia scrubland (VL), and woodland (WD). Foliar δ15N values in cangas were higher than those in savannas but lower than those in tropical forests, indicating more conservative N cycles in Amazonian cangas than in forests. The lower δ15N in savanna formations may be due to a higher importance of mycorrhizal species in savanna vegetation than in canga vegetation. Elevated δ13C values indicate higher water shortage in canga ecosystems than in forests. Foliar and litter nutrient concentrations vary among canga physiognomies, indicating differences in nutrient dynamics. Lower nutrient availability, higher C:N ratios, and lower δ15N values characterize VL, whereas WD is delineated by lower δ13C values and higher soil P. These results suggest lower water restriction and lower P limitation in WD, whereas VL shows more conserved N cycles due to lower nutrient availability. Differences in nutrient and water dynamics among physiognomies indicate different ecological processes; thus, the conservation of all physiognomies is required to ensure the maintenance of functional diversity in this unique ecosystem.  相似文献   

8.
Multiple nutrient cycles regulate biological nitrogen (N) fixation in forests, yet long-term feedbacks between N-fixation and coupled element cycles remain largely unexplored. We examined soil nutrients and heterotrophic N-fixation across a gradient of 24 temperate conifer forests shaped by legacies of symbiotic N-fixing trees. We observed positive relationships among mineral soil pools of N, carbon (C), organic molybdenum (Mo), and organic phosphorus (P) across sites, evidence that legacies of symbiotic N-fixing trees can increase the abundance of multiple elements important to heterotrophic N-fixation. Soil N accumulation lowered rates of heterotrophic N-fixation in organic horizons due to both N inhibition of nitrogenase enzymes and declines in soil organic matter quality. Experimental fertilization of organic horizon soil revealed widespread Mo limitation of heterotrophic N-fixation, especially at sites where soil Mo was scarce relative to C. Fertilization also revealed widespread absence of P limitation, consistent with high soil P:Mo ratios. Responses of heterotrophic N-fixation to added Mo (positive) and N (negative) were correlated across sites, evidence that multiple nutrient controls of heterotrophic N-fixation were more common than single-nutrient effects. We propose a conceptual model where symbiotic N-fixation promotes coupled N, C, P, and Mo accumulation in soil, leading to positive feedback that relaxes nutrient limitation of overall N-fixation, though heterotrophic N-fixation is primarily suppressed by strong negative feedback from long-term soil N accumulation.  相似文献   

9.
Nutrient limitation causes reduced growth of organisms, which can translate into far-reaching consequences for populations, communities, and ecosystems. Phosphorus (P) limitation, in particular, is associated with reductions in organismal growth because ribosomes, upon which growth depends, require abundant phosphorus to be produced. Chromosomes are also relatively rich in P, meaning that organisms with relatively high chromosome complements (e.g. polyploids) might be especially dependent on abundant environmental P. Here we address the likelihood of nutrient limitation in multiple populations of Potamopyrgus antipodarum, a New Zealand freshwater snail featuring wide ploidy variation. We found that some form of P limitation is very likely in many, but not all, populations of this snail that we surveyed. We also detected extensive across-population variation in P and nitrogen (N) content and N and P limitation and co-limitation in the algae that P. antipodarum eat. Accordingly, we then experimentally evaluated how P and N alone and together influenced growth rate in P. antipodarum. We found that response to nutrients differed by lineage and that dietary P content was more important than dietary N content as a determinant of growth rate, a trait closely tied to fitness in P. antipodarum. The widespread likelihood of (1) P limitation and (2) variation in dietary P availability across New Zealand lakes, along with (3), evidence for lineage-level variation in sensitivity to P limitation, sets the stage for the possibility that variation in nutrient availability contributes to the distribution and maintenance of ploidy variation in P. antipodarum.  相似文献   

10.
11.
Dinoflagellates in the genus Symbiodinium (zooxanthellae) provide the photosynthesis that sustains the majority of primary production in coral reefs. They occur symbiotically with several phyla, including mollusks such as giant clams (Tridacna spp.). This mutualistic association is obligatory for the giant clams, but the exact point in which this symbiosis is established and the main translocated photosynthate are unknown. In this study, we tracked the expression of specific genes for symbiosis and glycerol synthesis during a time course experiment. Giant clam larvae were raised until 75 h post-fertilization and then infected with cultured isolates of Symbiodinium clade A3. Expression of symbiosis-specific and housekeeping genes was monitored at four time points. The expression of H+-ATPase, a symbiosis-specific gene in Symbiodinium, was observed at 24 h after symbiont acquisition by the clam larvae. The expression of an enzyme responsible for glycerol synthesis was also observed. Together, these results show that the symbiotic relationship was already in place 24 h after Symbiodinium acquisition, during veliger larval stage. This is the first report using a molecular symbiosis-specific marker that supports symbiotic activity between Symbiodinium and a metazoan larva of an organism that acquires symbionts horizontally. From the expression of the glycerol-synthesizing gene, it was qualitatively determined that Symbiodinium cells may produce glycerol regardless of whether they are free-living or in symbiosis.  相似文献   

12.
The abundance of nifH, nirS, and nirK gene fragments involved in nitrogen (N) fixation and denitrification in thinned second-growth Douglas-fir (Pseudotsuga menziesii subsp. menziesii [Mirb.] Franco) forest soil was investigated by using quantitative real-time PCR. Prokaryotic N cycling is an important aspect of N availability in forest soil. The abundance of universal nifH, Azotobacter sp.-specific nifH (nifH-g1), nirS, and nirK gene fragments in unthinned control and 30, 90, and 100% thinning treatments were compared at two long-term research sites on Vancouver Island, Canada. The soil was analyzed for organic matter (OM), total carbon (C), total N, NH4-N, NO3-N, and phosphorus (P). The soil horizon accounted for the greatest variation in nutrient status, followed by the site location. The 30% thinning treatment was associated with significantly greater nifH-g1 abundance than the control treatment in one site; at the same site, nirS in the mineral soil horizon was significantly reduced by thinning. The abundance of nirS genes significantly correlated with the abundance of nirK genes. In addition, significant correlations were observed between nifH-g1 abundance and C and N in the organic horizon and between nirS and nirK and N in the mineral horizon. Overall, no clear influence of tree thinning on nifH, nirS, and nirK was observed. However, soil OM, C, and N were found to significantly influence N-cycling gene abundance.Nitrogen (N) is a limiting nutrient in most Douglas-fir (Pseudotsuga menziesii subsp. menziesii [Mirb.] Franco) forest ecosystems. Understanding the links between forest management and forest ecosystem function, including the cycling of N, is of paramount importance to researchers and forest managers. Management practices such as thinning and clear-cutting can alter the soil microbial community, potentially altering the rate and amount of net N addition or loss to the forest floor. Clear-cutting alters the functional diversity of soil microorganisms and alters soil characteristics (temperature, pH, moisture, and nutrient status). Thinning and clear-cutting can increase nitrification, denitrification, and leaching of N in soil, all of which can reduce the available N (2, 13, 22, 41, 47). Clear-cutting in Douglas-fir forests can also remove associated gene pools of diazotrophic microorganisms (46). It is not yet well understood how clear-cutting or thinning affects the abundance of N-cycling microorganisms. We focus on two populations of N-cycling microorganisms: diazotrophs, which biologically fix N2 gas to ammonia, and denitrifiers, which reduce N oxides and result in the release of N-containing gasses.Fixation of N by diazotrophic microorganisms is the primary source of N addition to undisturbed, unfertilized forest soil ecosystems (9, 39). The diazotrophic community is most often studied in situ using the marker gene for nitrogenase reductase (nifH); the diversity and abundance of diazotrophic microorganisms as determined by nifH characterization may be used as an indicator of overall soil ecological health. Diazotrophs can be symbiotic, associated (e.g., with a specific plant or fungal biomass), or free-living in the soil. Endophytic diazotrophs fix ∼100 times more N than free-living strains (9). Free-living diazotrophs such as Azotobacter vinelandii and A. chroococcum may fix between 0 and 60 kg of N ha−1 year−1 (9) and, because of a relative dearth of endophytic interactions in coniferous forests, free-living diazotrophs can be an important source of N in these soils. Cultural studies have shown that free-living diazotrophs improve the establishment of mycorrhizae and conifer seedlings, with relative activity fluctuating according to season, site aspect, and moisture conditions (11). Fixed-N inputs act as a catalyst for interlinked N-cycling events, e.g., fungal decomposition of woody debris and organic material (28). Nitrogen fixation in temperate forest soil is directly related to the amounts of soil organic matter (17). However, it is unclear how nifH gene abundance relates to the amount of total carbon (C) and organic matter (OM) and N in forest soil. It is also unknown how common silvicultural practices (e.g., clear-cutting and thinning) affect diazotrophic abundance or how diazotrophic abundance may in turn affect cycling of soil nutrients.The reduction of inorganic N oxides by denitrifying microorganisms can cause N loss from forest soil ecosystems, as well as the release of greenhouse gases into the atmosphere. The loss of N from temperate forest soil as N2O has been reported as ranging from 0.2 to 7.0 kg ha−1 year−1, depending largely on soil nitrogen status, soil moisture, and temperature (57). Robertson and Tiedje (44) state that soil N loss in coniferous ecosystems due to denitrification is regulated by nitrification potential (e.g., nitrate levels) in the soil, and while not considered a major N loss component following clear-cutting, this loss is generally of the same magnitude as the N loss due to leaching. Denitrification is primarily studied using molecular approaches by monitoring several genes in the denitrification pathway: cytochrome cd1-containing nitrite reductase (nirS), Cu-containing nitrite reductase (nirK), nitrous oxide reductase (nosZ), and membrane-bound nitrate reductase A (narG). The nirS and nirK genes were the denitrification genes used in the present study. Studies demonstrating (i) that the nirS gene is more diverse than nirK in soil and (ii) the domination of the nirK population by a relatively reduced number of clones have been published (42, 45). However, recent meta-analysis of studies involving nirK and nirS has shown that both communities tend to be phylogenetically clustered in undisturbed soils (23).To compare the effects of silvicultural practices on the abundance of diazotrophs and denitrifiers, we used quantitative real-time PCR (qPCR) assays to quantify nifH, nirS, and nirK genes in soil. This method can be used to quantify target sequences in environmental samples. Several qPCR protocols for the analysis of functional gene abundance in soil have been developed for N-cycling genes, including nifH, ammonia monooxygenase (amoA), nirK, nirS, nosZ, and narG (21, 24, 31, 38, 43, 54, 55). The objectives of the present study were (i) to quantify nifH, nirS, and nirK; (ii) to compare the effects of thinning and clear-cutting in Douglas-fir stands on the abundance of total diazotrophs, free-living diazotrophs, and denitrifiers; and (iii) to elucidate the relationships between N-cycling genes and nutrient abundance in forest soils.  相似文献   

13.
It is well documented that phosphorus (P) input stimulates biological nitrogen (N) fixation (BNF) in tropical forests with non-legume trees. However, in tropical legume forests with soil N enrichment and P deficiency, the effects of P availability and its combination with N on BNF remain poorly understood. In this study, we measured BNF rate in different compartments, i.e., bulk soil, forest floor, rhizosphere, and nodules, in two tropical plantations with legume trees Acacia auriculiformis (AA) versus non-legume trees Eucalyptus urophylla, (EU) in southern China after 4 years of P addition and combined N and P additions. The objective was to investigate how P addition and its combination with N addition regulate BNF in a tropical legume plantation, and to compare the effects with those in a non-legume plantation. Our results showed that total BNF rates were significantly higher in the P-addition plots than in the control plots by 27.4 ± 4.3 and 23.3 ± 1.7 % in the EU and AA plantations, respectively. Total BNF rates were significantly higher in the NP-addition plots than in the control plots by 27.7  ± 5.0 and 8.5 ± 1.4 % in the EU and AA plantations, respectively, which contrasted to our previous result that total BNF rates were significantly lower in N-addition plots than in the control plots in the AA plantation. These findings suggest that P input can stimulate BNF in tropical forest biome dominated by legume trees, even in consideration of elevated atmospheric N deposition. Thus, our study revealed the important role of P in regulating biological N input, which should be taken into account in the modeling of biogeochemical cycles in the future.  相似文献   

14.
Regulatory response and interaction of Bradyrhizobium and arbuscular mycorrhizal fungi (AMF) play a vital role in rhizospheric soil processes and productivity of soybean (Glycine max L.). Nitrogen (N) and phosphorus (P) are essential nutrients for plant growth and productivity, the synergistic interaction(s) of AMF and Bradyrhizobium along with rhizospheric beneficial microorganisms stimulate soybean growth and development through enhanced mineral nutrient acquisition (N and P) and improved rhizosphere environment. Such interactions are crucial, especially under low-input eco-friendly agricultural cropping systems, which rely on biological processes rather than agrochemicals to maintain soil quality, sustainability, and productivity. Furthermore, enhancement of N-fixation by root nodules along with AMF-mediated synergism improves plant P nutrition and uptake, and proliferation of phosphate-solubilizing fungi. However, the genetic and/or allelic diversity among native strains, their genes/enzymes and many environmental factors (e.g., soil organic matter, fertilizers, light, temperature, soil moisture, and biotic interactors) affect the interactions between AMF and Bradyrhizobium. New information is available regarding the genetic composition of elite soybean inoculant strains in maximizing symbiotic performance, N-fixing capabilities and depending on N and P status the host-mediated regulation of root architecture. Overall, for sustainable soybean production systems, a deeper understanding of the interaction effects of Bradyrhizobium and AMF co-inoculation are expected in the future, so that optimized combinations of microorganisms can be applied as effective soil inoculants for plant growth promotion and fitness. The objective of this review is to offer insights into the mechanistic interactions of AMF and Bradyrhizobium and rhizopheric soil health, and elucidate the role of environmental factors in regulating growth, development and sustainable soybean productivity.  相似文献   

15.
16.
We determined the entire genome sequence of the marine bacterium Cobetia marina KMM 296 de novo, which was isolated from the mussel Crenomytilus grayanus that inhabits the Sea of Japan. The genome that provides the lifestyle of this marine bacterium provides alternative metabolic pathways that are characteristic of the inhabitants of the rhizospheres of terrestrial plants, as well as deep-sea ecological communities (symbiotic and free-living bacteria). The genome of C. marina KMM 296 contains genes that are involved in the metabolism and transport of nitrogen, sulfur, iron, and phosphorus. C. marina strain KMM 296 is a promising source of unique psychrophilic enzymes and essential secondary metabolites.  相似文献   

17.
18.
Surveys of forests and stockpiled timber of pine, spruce, larch, and silver fir in 14 administrative subjects of the Russian Federation revealed widespread occurrence of the coniferous wood parasitic nematode Bursaphelenchus mucronatus. Twenty species of bacteria belonging to 13 genera have been detected in 25 B. mucronatus isolates, and their identity has been determined by direct sequencing of the 16S RNA gene. The most frequently occurring were bacteria from the genera Pseudomonas, Stenotrophomonas, Pantoea, Bacillus, Burkholderia, and Serratia. Prevalence of Pseudomonas brenneri and P. fluorescence, which were also found in the nematode dauer larva (LIV) isolated from the fir sawyer beetle Monochamus urussovi, have also been assessed. Two nematode B. xylophilus isolates from Portugal and one isolate from the United States have been examined, and 10 symbiotic bacteria species have been isolated, including Agrobacterium tumefacience, P. fluorescens, P. brenneri, Rahnella aquatilis, Stenotrophomonas maltophilia, S. rhizophila, and Yersinia mollaretii.  相似文献   

19.
Water stress and nitrogen (N) availability are the two main factors limiting plant growth, and the two constrains can interact in intricate ways. Moreover, atmospheric N depositions are altering the availability of these limiting factors in many terrestrial ecosystems. Here, we studied the combined effects of different soil water availability and N supply on photosynthesis and water-use efficiency (WUE) in Picea asperata seedlings cultured in pots, using gas exchange, and stable carbon and nitrogen isotope composition (δ 13C and δ 15N). Photosynthesis under light saturation (A sat) and stomatal conductance (g s) of P. asperata decreased as the soil moisture gradually diminished. Under severe water-stress condition, N addition decreased the A sat and g s, whereas the positive effects were observed in moderate water-stress and well-watered conditions. The effect of N addition on the intrinsic WUE (WUEi) deduced from gas exchange was associated with soil water availability, whereas long-term WUE evaluated by leaf δ 13C only affected by soil water availability, and it would be elevated with soil moisture gradually diminished. Water deficit would restrict the uptake and further transport of N to the aboveground parts of P. asperata, and then increasing δ 15N. Therefore, δ 15N in plant tissues may reflect changes in N allocation within plants. These results indicate that the effect of N enrichment on photosynthesis in P. asperata is largely, if not entirely, dependent on the severity of water stress, and P. asperata would be more sensitive to increasing N enrichment under low soil water availability than under high soil moisture.  相似文献   

20.
The invasive species Eupatorium adenophorum is known to influence stand structure and wildfire the hazard in forests. In the current work, we quantitatively examined fire effects in invaded and uninvaded plots in southwestern Sichuan Province, China, with five different forest sites that had different types of dominant species: Pinus yunnanensis, P. yunnanensisQuercus spp., Keteleeria fortunei, K. fortuneiQuercus spp., and Eucalyptus robusta. We compared the fuel chemistry (moisture, ash, heat value, and ignition point) and fire severity (flame length, fire intensity) under three burning conditions between the invaded and uninvaded plots in each forest sites, and then analyzed the results using multivariate response permutation procedures (MRPP). The burning conditions included: low (fine fuel moisture of 15 % and 5 km/h windspeed), moderate (fine fuel moisture of 10 % and 15 km/h windspeed), and extreme (fine fuel moisture of 5 % and 30 km/h windspeed). With all five sites, the fire severity and fuel loads were clearly significantly higher at the invaded sites. Fire severity was also intensified in the invaded coniferous sites compared to their mixed forest sites. These results indicate that biological invasions may increase the surface fire severity, perhaps through an increase in the heat value, and fuel loads, while reducing the moisture, ash, and ignition point of the understory herbaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号