首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gap junction protein, connexin43 (Cx43) is involved in mechanotransduction in bone. Recent studies using in vivo models of conditional Cx43 gene (Gja1) deletion in the osteogenic linage have generated inconsistent results, with Gja1 ablation resulting in either attenuated or enhanced response to mechanical load, depending upon the skeletal site examined or the type of load applied. To gain further insights on Cx43 and mechanotransduction, we examined bone formation response at both endocortical and periosteal surfaces in 2-month-old mice with conditional Gja1 ablation driven by the Dermo1 promoter (cKO). Relative to wild type (WT) littermates, it requires a larger amount of compressive force to generate the same periosteal strain in cKO mice. Importantly, cKO mice activate periosteal bone formation at a lower strain level than do WT mice, suggesting an increased sensitivity to mechanical load in Cx43 deficiency. Consistently, trabecular bone mass also increases in mutant mice upon load, while it decreases in WT. On the other hand, bone formation actually decreases on the endocortical surface in WT mice upon application of axial mechanical load, and this response is also accentuated in cKO mice. These changes are associated with increase of Cox-2 in both genotypes and further decrease of Sost mRNA in cKO relative to WT bones. Thus, the response of bone forming cells to mechanical load differs between trabecular and cortical components, and remarkably between endocortical and periosteal envelopes. Cx43 deficiency enhances both the periosteal and endocortical response to mechanical load applied as axial compression in growing mice.  相似文献   

2.
Increased mechanical loading of bone with the rat tibia four-point bending device stimulates bone formation on periosteal and endocortical surfaces. With long-term loading cell activity diminishes, and it has been reported that early gains in bone size may reverse. This study examined the time course for bone cellular and structural response after 6, 12, and 18 wk of loading at 1,200-1, 700 microstrain (muepsilon). Bone formation rates, measured by histomorphometry, were compared within groups, between loaded and contralateral nonloaded tibiae, and between weeks. Formation surface, mineral apposition rate, and bone formation rate on periosteal and endocortical surfaces were elevated after 6 wk of loading. By 12 wk of loading, periosteal and endocortical formation surface and endocortical mineral apposition rates were elevated. By 18 wk of loading, periosteal adaptation appeared complete, whereas endocortical mineral apposition rate remained elevated. No periosteal resorption was observed. Average thickness of new bone formed, from baseline to collection, was greater in loaded than nonloaded tibiae by week 6 and was maintained through week 18. Early increases in bone formation result in periosteal apposition of new bone that persists after formation ceases.  相似文献   

3.
Our purpose was to determine the effects of a mechanical loading intervention on mass, geometry, and strength of rat cortical bone during a period of disuse concurrent with calcium deficiency (CD). Adult female rats were assigned to unilateral hindlimb immobilization, immobilized-loaded, or control (standard chow, 1.85% calcium) treatments. Both immobilized groups were fed a CD rat chow (0.01% calcium) to induce high bone turnover. Three times weekly, immobilized-loaded rats were subjected to 36 cycles of 4-point bending of the immobilized lower leg. After 6 wk, the immobilized rats exhibited decreased tibial shaft bone mineral density (-12%), ultimate load (-19%), and stiffness (-20%; tested in 3-point bending to failure) vs. control rats. Loading prevented this decline in bone density and attenuated decreases in ultimate load and stiffness. Elastic modulus was unaffected by disuse or loading. Bone cross-sectional area in the immobilized-loaded rats was equivalent to that of control animals, even though endocortical resorption continued unabated. On the medial periosteum, percent mineralizing surface doubled vs. that in immobilized rats. This loading regimen stimulated periosteal mineralization and maintained bone mineral density, thereby attenuating the loss in bone strength incurred with disuse and concurrent calcium deficiency.  相似文献   

4.
Effects of long-term tennis loading on volumetric bone mineral density (vBMD) and geometric properties of playing-arm radius were examined. Paired forearms of 16 tennis players (10 women) and 12 healthy controls (7 women), aged 18-24 yr, were scanned at mid and distal site by using peripheral quantitative computerized tomography. Tomographic data at midradius showed that tennis playing led to a slight decrease in cortical vBMD (-0.8% vs. nonplaying arm, P < 0. 05) and increase both in periosteal and endocoritcal bone area (+15. 2% for periosteal bone, P < 0.001; and +18.8% for endocortical bone, P < 0.001). These data suggest that, together with an increase in cortical thickness (+6.4%, P < 0.01), cortical drift toward periosteal direction resulted in improvement of mechanical characteristics of the playing-arm midradius. Enlargement of periosteal bone area was also observed at distal radius (+6.8%, P < 0.01), and the relative side-to-side difference in periosteal bone area was inversely related to that in trabecular vBMD (r = -0.53, P < 0.05). We conclude that an improvement of mechanical properties of young adult bone in response to long-term exercise is related to geometric adaptation but less to changes in vBMD.  相似文献   

5.
In mechanical disuse conditions associated with immobilization and microgravity in spaceflight, cortical endosteal surface moved outward with periosteal surface moving slightly or unchanged, resulting in reduction of cortical thickness. Reduced thickness of the shaft cortex of long bone can be considered as an independent predictor of fractures. Accordingly, it is important to study the remodeling process at cortical endosteal surface. This paper presents a computer simulation of cortical endosteal remodeling induced by mechanical disuse at the Basic Multicellular Units level with cortical thickness as controlling variables. The remodeling analysis was performed on a representative rectangular slice of the cross section of cortical bone volume. The pQCT data showing the relationship between the duration of paralysis and bone structure of spinal cord injured patients by Eser et al. (2004) were used as an example of mechanical disuse to validate the model. Cortical thickness, BMU activation frequency, mechanical load and principal compressive strain for tibia and femur cortical models were simulated. The effects of varying the mechanical load and maximum BMU activation frequency were also investigated. The cortical thicknesses of femur and tibia models were both consistent with the clinical data. Varying the decreasing coefficient in mechanical load equation had little effect on the steady state values of cortical thickness and BMU activation frequency. However, it had much effect on the time to reach steady state. The maximum BMU activation frequency had effects on both the steady state value and the time to reach steady state for cortical thickness and BMU activation frequency. The computational model for cortical endosteal surface remodeling developed in this paper can be further used to quantify and predict the effects of mechanical factors and biological factors on cortical thickness and help us to better understand the relationship between bone morphology and mechanical as well as biological environment.  相似文献   

6.

Background

The adaptive nature of bone formation under mechanical loading is well known; however, the molecular and cellular mechanisms in vivo of mechanical loading in bone formation are not fully understood. To investigate both mechanisms at the early response against mechanotransduction in vivo, we employed a noninvasive 3-point bone bending method for mouse tibiae. It is important to investigate periosteal woven bone formation to elucidate the adaptive nature against mechanical stress. We hypothesize that cell morphological alteration at the early stage of mechanical loading is essential for bone formation in vivo.

Principal Findings

We found the significant bone formation on the bone surface subjected to change of the stress toward compression by this method. The histological analysis revealed the proliferation of periosteal cells, and we successively observed the appearance of ALP-positive osteoblasts and increase of mature BMP-2, resulting in woven bone formation in the hypertrophic area. To investigate the mechanism underlying the response to mechanical loading at the molecular level, we established an in-situ immunofluorescence imaging method to visualize molecules in these periosteal cells, and with it examined their cytoskeletal actin and nuclei and the extracellular matrix proteins produced by them. The results demonstrated that the actin cytoskeleton of the periosteal cells was disorganized, and the shapes of their nuclei were drastically changed, under the mechanical loading. Moreover, the disorganized actin cytoskeleton was reorganized after release from the load. Further, inhibition of onset of the actin remodeling blocked the proliferation of the periosteal cells.

Conclusions

These results suggest that the structural change in cell shape via disorganization and remodeling of the actin cytoskeleton played an important role in the mechanical loading-dependent proliferation of cells in the periosteum during bone formation.  相似文献   

7.
According to mechanobiologic theories, persistent intermittent mechanical stimulation is required to maintain differentiated cartilage. In a rat model for bone repair, we studied the fate of mechanically induced cartilage after unloading. In three groups of rats, regenerating mesenchymal tissue was submitted to different loading conditions in bone chambers. Two groups were immediately killed after loading periods of 3 or 6 weeks (the 3-group and the 6-group). The third group was loaded for 3 weeks and then kept unloaded for another 3 weeks (the (3 + 3)-group). Cartilage was found in all loaded groups. Without loading, cartilage does not appear in this model. In the 3-group there was no clear ongoing endochondral ossification, the 6-group showed ossification in 2 out of 5 cartilage containing specimens, and in the (3 + 3)-group all cartilage was undergoing ossification. These results suggest a tendency of the cartilage to be maintained also under unloaded conditions until it is reached by bone that can replace it through endochondral ossification.Additional measurements showed less amount of new bone in the loaded specimens. In most of the loaded specimens in the 3-group, necrotic bone fragments were seen embedded in the fibrous tissue layer close to the loading piston, indicating that bone tissue had been resorbed due to the hydrostatic compressive load. In some specimens, a continuous cartilage layer covered the end of the specimen and seemed to protect the underlying bone from pressure-induced resorption. We suggest that one of the functions of the cartilage forming in the compressive loaded parts of a bone callus is to protect the surrounding bone callus from pressure-induced fluid flow leading to resorption.  相似文献   

8.
This study investigated the adherence of periosteum to bone after elevation to document the temporal sequence of healing at the periosteal/bone interface. There has been a lack of consensus among surgeons as to the time required for healing at this interface; some believe that the healing achieves significant strength in a few days, whereas others believe that the periosteum does not adhere to the bone for many weeks. The aim of this study was to document the time course for healing, completeness of the reattachment, and structural characteristics of the union of bone and periosteum.To test the hypothesis, scalp flaps were elevated in a subperiosteal plane and were reattached in 40 adult guinea pigs and controls. The individual groups were studied at 3, 6, 12, 30, and 90 days postoperatively. Postmortem study consisted of analysis of the mechanical and histologic findings. Strength of adherence was documented by measuring the force required for reverse avulsion of the flaps with an Instron Mini 44 tensiometer. The specimens were also submitted for electron microscopic examination. The mean tension recorded in the plateau phase of avulsion of the flaps was as follows: controls, 78 g; experimental at 3 and 6 days, not applicable (weak adherence not permitting exposure for reverse avulsion); 12 days, 39 g (p = 0.0001); 30 days, 58 g (p = 0.0012), and 90 days, 63 g (p = 0.0229). There was a significant difference between all groups and the controls. Electron microscopic study showed collagen deposition at the bone periosteal interface, which became progressively more organized in the groups studied at 30 and 90 days, with decreasing amounts of inflammation and inflammatory cells.This study demonstrated that healing at the bone/periosteal interface progresses at a rate consistent with healing of most other wounds, dispelling many widespread beliefs that the adherence at this interface was accelerated. The temporal sequence of healing at the periosteal bone interface should be considered in the various procedures in which periosteal flaps are elevated. For example, there is clinical relevance in subperiosteal brow lift procedures, in which the periosteum should be reattached by a fixation technique that will remain stable for a minimum of 30 days to allow adequate adherence between the bone and periosteum at the postoperative elevated brow position.  相似文献   

9.
Static vs dynamic loads as an influence on bone remodelling   总被引:15,自引:0,他引:15  
Remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulnar preparation consisted of the 110 mm section of the bone shaft between two submetaphyseal osteotomies. Each end of the preparation was transfixed by a stainless steel pin and the shaft either protected from normal functional loading with the pins joined by external fixators, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression for a single 100 s period per day by engaging the pins in an Instron machine. Similar loads (525 N) were used in both static and dynamic cases. The strains engendered were determined by strain gauges, and at their maximum around the bone's midshaft were − 0.002. The intermittent load was applied at a frequency of 1 Hz as a ramped square wave, with a rate of change of strain during the ramp of 0.01 s−1. Peak strain at the midshaft of the ulna during wing flapping in the intact bone was recorded from bone bonded strain gauges in vivo as −0.0033 with a maximum rate of change of strain of 0.056 s−1.

Examination of bone sections from the midpoint of the preparation after an 8 week period indicated that in both non-loaded and statically loaded bones there was an increase in both endosteal diameter and intra cortical porosity. These changes produced a decrease in cross sectional area which was similar in the two groups (− 13%). Intermittently loaded bones however showed a 24% increase in cross sectional area resulting from new bone deposited predominantly, but not exclusively, on the periosteal surface. It appears that in this preparation, a static load sufficient to produce strains in the functional dynamic strain range has no effect on bone remodelling, whereas a similar load applied intermittently for a short daily period may be associated with a substantial increase in bone mass.  相似文献   


10.
Most in vivo studies addressing the skeletal responses of mice to mechanical loading have targeted cortical bone. To investigate trabecular bone responses also we have developed a caudal vertebral axial compression device (CVAD) that transmits mechanical loads to compress the fifth caudal vertebra via stainless steel pins inserted into the forth and sixth caudal vertebral bodies. Here, we used the CVAD in C57BL/6 (B6) and C3H/Hej (C3H) female mice (15 weeks of age) to investigate whether the effect of regular bouts of mechanical stimulation on bone modeling and bone mass was dependent on dose and genotype. A combined micro-computed tomographic and dynamic histomorphometric analysis was carried out at the end of a 4-week loading regimen (3,000 cycles, 10 Hz, 3 x week) for load amplitudes of 0N, 2N, 4N and 8N. Significant increases in trabecular bone mass of 9 and 21% for loads of 4N and 8N, respectively, were observed in B6 mice. A significant increase of 10% in trabecular bone mass occurred for a load of 8N in the C3H strain. For other loads, no significant increases were detected. Both mouse strains exhibited substantial increases in trabecular bone formation rates for all loads, B6: 111% (2N), 86% (4N), 164% (8N), C3H: 41% (2N), 38% (4N), 141% (8N). Significant decreases in osteoclast number of 146 and 93% for a load of 8N were detected in B6 and C3H mice, respectively. These findings demonstrate that the effect of loading on the structural and functional parameters of bone is dose and genotype dependent. The caudal vertebral loading model established here is proposed for further studies addressing the molecular processes involved in the skeletal responses to mechanical stimuli.  相似文献   

11.
Age-related decline in periosteal adaptation negatively impacts the ability to utilize exercise to enhance bone mass and strength in the elderly. We recently observed that in senescent animals subject to cyclically applied loading, supplementation with Cyclosporin A (CsA) substantially enhanced the periosteal bone formation rates to levels observed in young animals. We therefore speculated that if the CsA supplement could enhance bone response to a variety of types of mechanical stimuli, this approach could readily provide the means to expand the range of mild stimuli that are robustly osteogenic at senescence. Here, we specifically hypothesized that a given CsA supplement would enhance bone formation induced in the senescent skeleton by both cyclic (1-Hz) and rest-inserted loading (wherein a 10-s unloaded rest interval is inserted between each load cycle). To examine this hypothesis, the right tibiae of senescent female C57BL/6 mice (22 Mo) were subjected to cyclic or rest-inserted loading supplemented with CsA at 3.0 mg/kg. As previously, we initially found that while the periosteal bone formation rate (p.BFR) induced by cyclic loading was enhanced when supplemented with 3.0 mg/kg CsA (by 140%), the response to rest-inserted loading was not augmented at this CsA dosage. In follow-up experiments, we observed that while a 30-fold lower CsA dosage (0.1 mg/kg) significantly enhanced p.BFR induced by rest-inserted loading (by 102%), it was ineffective as a supplement with cyclic loading. Additional experiments and statistical analysis confirmed that the dose-response relations were significantly different for cyclic versus rest-inserted loading, only because the two stimuli required distinct CsA dosages for efficacy. While not anticipated a priori, clarifying the complexity underlying the observed interaction between CsA dosage and loading type holds potential for insight into how bone response to a broad range of mechanical stimuli may be substantially enhanced in the senescent skeleton.  相似文献   

12.
We employed a novel method to exercise rats: making them rise to bipedal stance for feeding using raised cages. We studied its effects on the skeletons of 6 and 10-month-old intact or orchidectomized (ORX) rats. Body and hindlimb muscle weights, tibial BMC and periosteal cortical bone formation increased after housing in raised cages, but more so in 6-month-old animals than in 10-month-old ones. In 6-month-old orchidectomized rats, raised cages partially prevented ORX-induced bone loss by stimulating periosteal cortical bone (TX) formation and decreased bone resorption next to marrow. In 10-month-old male orchidectomized rats, raised cages also decreased the endosteal and trabecular bone resorption, but not enough to prevent completely ORX-induced net bone losses. Because the osteogenic effects of raised cages alone were only partial, we also studied the interaction between raised cage and prostaglandin E(2) (PGE(2)) in 10-month-old retired female breeders. When treated with combined raised cage and PGE(2), both cortical (TX) and trabecular bone mass of the proximal tibial metaphysis and lumbar vertebral body increased over either raised cages or PGE(2) treatment alone, that was accompanied by dramatic increased bone formation at periosteal and endosteal surfaces. Thus making rats rise to erect bipedal stance for feeding helps to prevent bone loss after orchidectomy; it amplifies the anabolic effects of PGE(2), and it provides an inexpensive, non-invasive and reliable way to increase mechanical loading of certain bones of the rat skeleton.  相似文献   

13.
Murine bone specimens are used extensively in skeletal research to assess the effects of environmental, physiologic and pathologic factors on their mechanical properties. Given the destructive nature of mechanical testing, it is normally performed as a terminal procedure, where specimens must be preserved without affecting their mechanical properties. To this end, we aimed to study the effects of tissue preservation (freezing and formalin fixation) on the elastic and viscoelastic mechanical properties of murine femur and vertebrae. A total of 120 femurs and 180 vertebral bodies (L3–L5) underwent non-destructive cyclic loading to assess their viscoelastic properties followed by mono-cyclic loading to failure to assess their elastic properties. All specimens underwent re-hydration in 0.9% saline for 30 min prior to mechanical testing. Analysis indicated that stiffness, modulus of elasticity, yield load, yield strength, ultimate load and ultimate strength of frozen and formalin-fixed femurs and vertebrae were not different from fresh specimens. Cyclic loading of both femurs and vertebrae indicated that loss, storage and dynamic moduli were not affected by freezing. However, formalin fixation altered their viscoelastic properties. Our findings suggest that freezing and formalin fixation over a 2-week period do not alter the elastic mechanical properties of murine femurs and vertebrae, provided that specimens are re-hydrated for at least half an hour prior to testing. However, formalin fixation weakened the viscoelastic properties of murine bone by reducing its ability to dissipate viscous energy. Future studies should address the long-term effects of both formalin fixation and freezing on the mechanical properties of murine bone.  相似文献   

14.
The assertion that the microstructure of periosteal new bone formation can be used to differentiate between disease etiologies (Schultz: Yrbk Phys Anthropol 44 2001 106–147; Schultz: Identification of pathological conditions in human skeletal remains, 2nd ed. London: Academic Press 2003 73–109) was tested in a pilot‐study, using diagnosed bone specimens from St George's Hospital Pathology Museum, London, UK. Embedded bone specimens exhibiting pathological periosteal new bone formation were examined using scanning electron microscopy in back‐scattered electron imaging mode (SEM‐BSE). The results suggest that several histological features (i.e. Grenzstreifen, Polsters, and sinuous lacunae) deemed to be diagnostic of specific pathological conditions are of no specific diagnostic value, as they are encountered in pathological conditions of differing disease etiology. These results tie in with a previous investigation demonstrating a lack of diagnostic qualitative or quantitative characteristics seen in the macroscopic and radiographic appearance of periosteal reactions (Weston: Am J Phys Anthropol 137 2008 48–59). Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
We investigated whether high-impact drop jumps could increase bone formation in the middiaphyseal tarsometatarsus of growing rooster. Roosters were designated as sedentary controls (n = 10) or jumpers (n = 10). Jumpers performed 200 drop jumps per day for 3 wk. The mechanical milieu of the tarsometatarsus was quantified via in vivo strain gauges. Indexes of bone formation and mechanical parameters were determined in each of twelve 30 degrees sectors subdividing the middiaphyseal cortex. Compared with baseline walking, drop jumping produced large peak strain rates (+740%) in the presence of moderately increased peak strain magnitudes (+30%) and unaltered strain distributions. Bone formation rates were significantly increased by jump training at periosteal (+40%) and endocortical surfaces (+370%). Strain rate was significantly correlated with the specific sites of increased formation rates at endocortical but not at periosteal surfaces. Previously, treadmill running did not enhance bone growth in this model. Comparing the mechanical milieus produced by running and drop jumps revealed that jumping significantly elevated only peak strain rates. This further emphasized the sensitivity of immature bone to high strain rates.  相似文献   

16.
While locking plate fixation is becoming increasingly popular for complex and osteoporotic fractures, for many indications compression plating remains the standard choice. This study compares the mechanical behaviour of the more recent locking compression plate (LCP) device, with the traditional dynamic compression plates (DCPs) in bone of varying quality using finite element modelling. The bone properties considered include orthotropy, inhomogeneity, cortical thinning and periosteal apposition associated with osteoporosis. The effect of preloads induced by compression plating was included in the models. Two different fracture scenarios were modelled: one with complete reduction and one with a fracture gap. The results show that the preload arising in DCPs results in large principal strains in the bone all around the perimeter of the screw hole, whereas for LCPs large principal strains occur primarily on the side of the screw proximal to the load. The strains within the bone produced by the two screw types are similar in healthy bone with a reduced fracture gap; however, the DCP produces much larger strains in osteoporotic bone. In the presence of a fracture gap, the DCP results in a considerably larger region with high tensile strains and a slightly smaller region with high compressive strains. These findings provide a biomechanical basis for the reported improved performance of locking plates in poorer bone quality.  相似文献   

17.
Mechanical loading caused by physical activity can stimulate bone formation and strengthen the skeleton. Estrogen receptors (ERs) play some role in the signaling cascade that is initiated in bone cells after a mechanical load is applied. We hypothesized that one of the ERs, ER-beta, influences the responsiveness of bone to mechanical loads. To test our hypothesis, 16-wk-old male and female mice with null mutations in ER-beta (ER-beta(-/-)) had their right forelimbs subjected to short daily loading bouts. The loading technique used has been shown to increase bone formation in the ulna. Each loading bout consisted of 60 compressive loads within 30 s applied daily for 3 consecutive days. Bone formation was measured by first giving standard fluorochrome bone labels 1 and 6 days after loading and using quantitative histomorphometry to assess bone sections from the midshaft of the ulna. The left nonloaded ulna served as an internal control for the effects of loading. Mechanical loading increased bone formation rate at the periosteal bone surface of the mid-ulna in both ER-beta(-/-) and wild-type (WT) mice. The ulnar responsiveness to loading was similar in male ER-beta(-/-) vs. WT mice, but for female mice bone formation was stimulated more effectively in ER-beta(-/-) mice (P < 0.001). We conclude that estrogen signaling through ER-beta suppresses the mechanical loading response on the periosteal surface of long bones.  相似文献   

18.
All hip replacement prostheses alter the load transfer from the hip joint into the femur by changing the mechanical loading of the proximal femur from an externally to an internally loaded system. This alteration of the load transfer causes stress shielding and might lead to severe bone loss, especially with uncemented prostheses. To minimize these effects, load transfer to the femur should occur as proximal as possible. In order to support sufficient primary stability, however, directly post operative (PO) distal stabilization is reasonable. Consequently, the prostheses have to alter its mechanical characteristics after implantation. This concept is referred to as load-shift concept. Primary stability during the early PO state is provided by a prosthesis shaft, which is widened at the tip by a biodegradable pin. After resorption of the pin load transfer occurs no longer distally. The objective of this study was the numerical evaluation of the load-shift concept. The analysis was performed with a finite element model. Three-dimensional non-linear dynamic gait analyses data were used to evaluate whether the load transfer during walking can be altered effectively by insertion and resorption of a distal pin. Directly PO 38% of the transverse load is transferred through the prosthesis shaft and micromotion of the proximal prostheses tip is below 55 microm. After resorption of the pin, no transverse loads are transferred through the prosthesis shaft. Therefore, the loading of the proximal bone tissue is far more pronounced than in the case of a standard prosthesis, demonstrating the feasibility of the load-shift concept. A balanced degradation of the pin simultaneously with the ingrowth of the prosthesis is expected to reduce hip replacement complications.  相似文献   

19.
In this study the relationships of bone mineral density (BMD) and bone structure parameters calculated from 2D microtomography images to bone strength were investigated. Femurs from 21 male Sprague Dawley rats were subjected to dual-energy X-ray absorptiometry, computerized microtomography (CmicroT) and either three-point cantilever bending (femoral shaft) or two-point bending compression (femoral neck). Gastrectomy was performed on 12 animals and 9 were sham operated. From the tomograms bone structure analysis was performed using a software routine based on grey level run-length method. Correlations of BMD and bone structure parameters to mechanical parameters were investigated as were differences between the gastrectomized and the control samples. The reductions of BMD between the groups were 21 and 27% in the femoral neck and shaft, respectively. For the shaft, the correlations of BMD to all mechanical parameters were significant and BMD was a consistent predictor of bone strength for cortical bone. However, in the femoral neck where cancellous bone predominates, BMD was weakly correlated only to deflection. A significant correlation between trabecular thickness and neck bone strength was found. Hence, compared to trabecular thickness, BMD was of limited value in predicting bone strength in the femoral neck.  相似文献   

20.
Bone-loading response varies with strain magnitude and cycle number.   总被引:3,自引:0,他引:3  
Mechanical loading stimulates bone formation and regulates bone size, shape, and strength. It is recognized that strain magnitude, strain rate, and frequency are variables that explain bone stimulation. Early loading studies have shown that a low number (36) of cycles/day (cyc) induced maximal bone formation when strains were high (2,000 microepsilon) (Rubin CT and Lanyon LE. J Bone Joint Surg Am 66: 397-402, 1984). This study examines whether cycle number directly affects the bone response to loading and whether cycle number for activation of formation varies with load magnitude at low frequency. The adult rat tibiae were loaded in four-point bending at 25 (-800 microepsilon) or 30 N (-1,000 microepsilon) for 0, 40, 120, or 400 cyc at 2 Hz for 3 wk. Differences in periosteal and endocortical formation were examined by histomorphometry. Loading did not stimulate bone formation at 40 cyc. Compared with control tibiae, tibiae loaded at -800 microepsilon showed 2.8-fold greater periosteal bone formation rate at 400 cyc but no differences in endocortical formation. Tibiae loaded at -1,000 microepsilon and 120 or 400 cyc had 8- to 10-fold greater periosteal formation rate, 2- to 3-fold greater formation surface, and 1-fold greater endocortical formation surface than control. As applied load or strain magnitude decreased, the number of cyc required for activation of formation increased. We conclude that, at constant frequency, the number of cyc required to activate formation is dependent on strain and that, as number of cyc increases, the bone response increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号