首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this research is to estimate and quantify the toxicity of titanium dioxide (TiO2) nanoparticles in microorganisms. Nano-sized particles of TiO2 were more toxic compared to micro-sized particles. Three microorganismal species, Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae, were used to test TiO2 antimicrobial effects. E. coli showed the lowest survival rate (36%), while S. cerevisiae showed the highest survival rate (71%). The antimicrobial effect of TiO2 was also dependent on ultraviolet ray wavelength. The survival ratio of E. coli was 40% at a 254 nm wavelength and 80% at 365 nm. To observe the effect of TiO2 on the intracellular metabolism, a metabolic flux analysis and the measurement of in vivo glucose-6-phosphate were performed. G6P concentration in cells exposed to TiO2 increased, and glycolysis flux was also higher than the controls.  相似文献   

3.
Groups of rats were fed diets containing supplemented adequate, or deficient amounts of alpha-tocopherol. Some rats from each group were exposed for 2 h to high-level concentrations of nitrogen dioxide in their breathing air. A comparison of wet and dry lung weights did not indicate that exposure of the gas was a cause of edema. Proportion of lung weight to total body weight was increased in all animals with the lipid content diminishing according to the amount of dietary apha-tocopherol available. Dietary intake of the vitamin did not seem to protect the lipid content of lungs of the supplemented dietary group from oxidation. No difference in total peroxides was noted between any of the groups. Inflation and deflation compliance measurements were greater for both exposed and non-exposed supplemented animals when compared to the adequate and deficient groups.  相似文献   

4.
Phaseolus vulgaris L. cv. Kinghorn Wax seedlings, supplied with nutrient solution containing either 0 or 5 mM nitrate as sole N source, were exposed to 0.25 μl/l NO2 for 6 hr each day for 10 days at continuous photosynthetic photon flux (PPF) of 100, 300, 500 or 700 μmol m−2 sec−1. There was a significant interaction of PPF and nitrate. Shoot and root dry weights increased with increasing PPFs only when nitrate was supplied. The main effects of NO2 on plant growth were significant; none of the interactions involving NO2 were significant. Exposure to NO2 decreased shoot and root dry weight in both the presence and absence of nutrient N and at all PPF levels. All interactions were significant for in vitro leaf nitrate reductase activity (NRA), which increased markedly at PPFs above 100 μmol m−2 sec−1 when nitrate was supplied. Treatment with NO2 strongly inhibited enzyme activity in the presence of nitrate, particularly at the 300 μmol m−2 sec−1 PPF level. These experiments demonstrated that PPF level does not modify the effect of NO2 on growth but does have a major effect on NRA and on NO2 effects on NRA in the presence of nutrient nitrate.  相似文献   

5.
6.
7.
We measured CO2 efflux from intact root/rhizosphere systems of 155 day old loblolly (Pinus taeda L.) and ponderosa (Pinus ponderosa Dougl. ex Laws.) pine seedlings in order to study the effects of elevated atmospheric CO2 on the below-ground carbon balance of coniferous tree seedlings. Seedlings were grown in sterilized sand culture, watered daily with either 1, 3.5 or 7 mt M NH 4 + , and maintained in an atmosphere of either 35 or 70 Pa CO2. Carbon dioxide efflux (mol CO2 plant–1 s–1) from the root/rhizosphere system of both species significantly increased when seedlings were grown in elevated CO2, primarily due to large increases in root mass. Specific CO2 efflux (mol CO2 g root–1 s–1) responded to CO2 only under conditions of adequate soil nitrogen availability (3.5 mt M). Under these conditions, CO2 efflux rates from loblolly pine increased 70% from 0.0089 to 0.0151 mol g–1 s–1 with elevated CO2 while ponderosa pine responded with a 59% decrease, from 0.0187 to 0.0077 mol g–1 s–1. Although below ground CO2 efflux from seedlings grown in either sub-optimal (1 mt M) or supra-optimal (7 mt M) nitrogen availability did not respond to CO2, there was a significant nitrogen treatment effect. Seedlings grown in supra-optimal soil nitrogen had significantly increased specific CO2 efflux rates, and significantly lower total biomass compared to either of the other two nitrogen treatments. These results indicate that carbon losses from the root/rhizosphere systems are responsive to environmental resource availability, that the magnitude and direction of these responses are species dependent, and may lead to significantly different effects on whole plant carbon balance of these two forest tree species.  相似文献   

8.
The standard sex-linked recessive lethal test was used to test whether NO2 induces lethal mutations in male germ cells of Drosophila in the presence or absence of alkylureas. Methylurea, ethylurea and NO2 alone did not enhance the mutation frequency significantly. However, highly significant enhancement in the mutation frequency was observed when adult flies were exposed to NO2 (150--280 ppm) for 3 h after ingestion of methylurea (0.1 M) or ethylurea (0.1 M) for 2 days. Oral administration of ethylnitrosourea and also of methylurea or ethylurea that had been exposed to NO2 in vitro were more effective in increasing the mutation frequency than methylurea or ethylurea combined in vivo with NO2. These results suggest that ingested alkylurea is converted in vivo by inhaled NO2 to highly mutagenic nitrosoalkylurea and/or other mutagens. No significant enhancement of the mutation frequency was observed when flies were fed on methylurea solution after they had been exposed to NO2.  相似文献   

9.
Toxic effects of excess cloned centromeres.   总被引:17,自引:7,他引:17       下载免费PDF全文
Plasmids carrying a Saccharomyces cerevisiae centromere have a copy number of one or two, whereas other yeast plasmids have high copy numbers. The number of CEN plasmids per yeast cell was made artificially high by transforming cells simultaneously with several different CEN plasmids carrying different, independently selectable markers. Some host cells carried five different CEN plasmids and an average total of 13 extra copies of CEN3. Several effects were noted. The copy number of each plasmid was unexpectedly high. The plasmids were mutually unstable. Cultures contained many dead cells. The viable host cells grew more slowly than control cells, even in nonselective medium. There was a pause in the cell cycle at or just before mitosis. We conclude that an excess of centromeres is toxic and that the copy number of centromere plasmids is low partly because of selection against cells carrying multiple centromere plasmids. The toxicity may be caused by competition between the centromeres for some factor present in limiting quantities, e.g., centromere-binding proteins, microtubules, or space on the spindle pole body.  相似文献   

10.
11.
12.
The effect of nitrogen dioxide gas on cell renewal in the respiratory tracts of hamsters was investigated after single and repeated exposures. Single exposure to 10 ppm NO2 for a period of five hours increased the number of cells labelled with tritiated thymidine in differing parts of the respiratory passage. The greatest increase was seen in animals killed 24h after exposure. The number of labelled cells had declined in animals killed at 42h and approached control level in animals killed at 72 h. Exposures for 5h once a week at two, six, eight and nine weeks particularly affected the bronchiolar-alveolar region, although the responses in the trachea and alveolar cells had returned to normal. The reparative response decreases as NO2 exposure continues. Twice a week exposure at one, nine and 15 weeks showed a further reduction, although peaks still occurred in animals killed 24h after exposure in the bronchiolar-alveolar region. Attempts were made to correlate these exposures with the total number of cells involved in a given hyperplastic area in different parts of the respiratory tract.Characteristic histophatological changes occurring in the various parts of the respiratory tract as a result of intermittent NO2 exposures are described.The effects of NO2 on ciliated mucus epithelium in the trachea and bronchial tree were investigated and more visible NO2 effects were found in ciliated epithelial cells in the bronchi and terminal bronchioles than in the alveolar lining cells.  相似文献   

13.
14.
15.
Nitrogen dioxide (*NO2) is an oxidizing free radical which can initiate a variety of destructive pathways in living systems, and several diseases are suspected to be connected with both exogenously and endogenously formed *NO2. Peroxynitrite (ONOO-/ONOOH) is believed to be an important endogenous source of *NO2 radicals, but other sources, among them enzymatically ones, have been identified recently. It also became clear during the last few years that in vivo formation of 3-nitrotyrosine strictly depends on the availability of *NO2 radicals. Since nitrogen dioxide is a very toxic compound an arsenal of antioxidants (e.g. vitamin C, glutathione, vitamin E, and beta-carotene) must eliminate this harmful radical in vivo. Here the recently identified superoxide (O2*-)-dependent formation of peroxynitrate (O2NOO-) and the central role of vitamin C are of special importance.  相似文献   

16.
17.
In order to predict the potential impacts of global change, it is important to understand the impact of increasing global atmospheric [CO2] on the growth and yield of crop plants. The objectives of this study were to determine the interaction of N fertilization rates and atmospheric [CO2] on radiation interception and radiation-use efficiency of rice (Oryza sativa L. cv. IR72) grown under tropical field conditions. Rice plants were grown inside open top chambers in a lowland rice field at the International Rice Research Institute in the Philippines at ambient (about 350 μmol mol-1) or elevated (about 600 μmol mol-1 during the 1993 wet season and 700 μmol mol-1 during the 1994 dry season) in combination with three levels of applied N (0, 50 or 100 kg N ha-1 in the wet season; 0, 90 or 200 kg N ha-1 in the dry season). Light interception was not directly affected by [CO2], but elevated [CO2] indirectly increased light interception through increasing total absorbed N. Plant N requirement for radiation interception was similar for rice grown under ambient [CO2] or elevated [CO2] treatments. The conversion efficiency of intercepted radiation to dry matter, radiation-use efficiency (RUE), was about 35% greater at elevated [CO2] than at ambient [CO2]. The relationship between leaf N and RUE was curvilinear. At ambient [CO2], RUE was fairly stable across levels of leaf N, but leaf N less than about 2.5% resulted in lower RUE for plants grown with elevated [CO2] than for plant grown at ambient [CO2]. Decreased leaf N with increased [CO2], therefore decreased RUE of rice plants grown at elevated [CO2]. When predicting responses of rice to elevated [CO2], RUE should be adjusted with a decrease in leaf N. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号