首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basement membrane proteins are targeted in organ-limited and systemic autoimmune nephritis, yet little is known about the origin or regulation of immunity to these complex extracellular matrices. We used mice transgenic for a nephrotropic systemic lupus erythematosus (SLE) Ig H chain to test the hypothesis that humoral immunity to basement membrane is actively regulated. The LamH-Cmu Ig H chain transgene combines with diverse L chains to produce nephrotropic Ig reactive with murine laminin alpha1. To determine the fate of transgene-bearing B cells in vivo, transgenic mice were outcrossed onto nonautoimmune B6 and SLE-prone MRL backgrounds and exposed to potent mitogen or Ag in adjuvant. In this work we demonstrate that transgenic autoantibodies are absent in serum from M6 and M29 lineage transgenic mice and transgenic B cells hypoproliferate and fail to increase Ig production upon exposure to endotoxin or when subjected to B cell receptor cross-linking. Administration of LPS or immunization with autologous or heterologous laminin, maneuvers that induce nonoverlapping endogenous anti-laminin IgG responses, fails to induce a transgenic anti-laminin response. The marked reduction in splenic B cell number suggests that selected LamH-Cmu H chain and endogenous L chain combinations generate autospecificities that lead to B cell deletion. It thus appears that SLE-like anti-laminin B cells have access to and engage a tolerizing self-Ag in vivo. Failure to induce autoimmunity by global perturbations in immune regulation introduced by the MRL autoimmune background and exposure to potent environmental challenge suggests that humoral immunity to nephritogenic basement membrane epitopes targeted in systemic autoimmunity is tightly regulated.  相似文献   

2.
We have analyzed the phenotype of B cell populations from mice transgenic for a rearranged Ig mu H chain gene. We find a decrease in the number of B cells in the spleens of these mice. Transgenic B cells have decreased surface levels of both IgM and IgD. The circulating IgM in these mice is 3- to 10-fold enriched in lambda L chains, compared with that in non-transgenic mice. Analysis of IgM-producing hybridomas, from transgenic mice that express the transgene at high levels, demonstrates that this higher lambda frequency is observed in transgene-nonexpressing as well as transgene-expressing hybridomas. A partial loss of L chain isotype exclusion is also noted in these hybridomas, and a significant proportion of primary B cells expressing both kappa and lambda L chains on their surface can be demonstrated. These findings suggest an ability of the transgenic Ig H chain to affect events in B cell ontogeny beyond the H chain locus. Our results support a quantitative model of exclusion for both the H chain alleles and the L chain isotypes.  相似文献   

3.
Lupus-prone, anti-DNA, heavy (H) chain "knock-in" mice were obtained by backcrossing C57BL/6 mice, targeted with a rearranged H chain from a VH11(S107)-encoded anti-DNA hybridoma (D42), onto the autoimmune genetic background of New Zealand Black/New Zealand White (NZB/NZW) F1 mice. The targeted female mice developed typical lupus serologic manifestations, with the appearance of transgenic IgM anti-DNA autoantibodies at a young age (2-3 mo) and high affinity, somatically mutated IgM and IgG anti-DNA Abs at a later age (6-7 mo). However, they did not develop clinical, lupus-associated glomerulonephritis and survived to at least 18 mo of age. L chain analysis of transgenic anti-DNA Abs derived from diseased NZB/NZW mouse hybridomas showed a very restricted repertoire of Vkappa utilization, different from that of nonautoimmune (C57BL/6 x BALB/c)F1 transgenic anti-DNA Abs. Strikingly, a single L chain was repetitively selected by most anti-DNA, transgenic NZB/NZW B cells to pair with the targeted H chain. This L chain had the same Vkappa-Jkappa rearrangement as that expressed by the original anti-DNA D42 hybridoma. These findings indicate that the kinetics of the autoimmune serologic manifestations are similar in wild-type and transgenic lupus-prone NZB/NZW F1 mice and suggest that the breakdown of immunologic tolerance in these mice is associated with the preferential expansion and activation of B cell clones expressing high affinity anti-DNA H/L receptor combinations.  相似文献   

4.
We explored mechanisms involved in B cell self-tolerance in a double- and triple-transgenic mouse model bearing the LamH-C mu Ig H chain conventional transgene and a gene-targeted replacement for a functional V kappa 8J kappa 5 L chain gene. Whereas the H chain is known to generate anti-laminin Ig in combination with multiple L chains, the H + L Ig binds ssDNA in addition to laminin. Immune phenotyping indicates that H + L transgenic B cells are regulated by clonal deletion, receptor editing via secondary rearrangements at the nontargeted kappa allele, and anergy. Collectively, the data suggest that multiple receptor-tolerogen interactions regulate autoreactive cells in the H + L double-transgenic mice. Generation of H + LL triple-transgenic mice homozygous for the targeted L chain to exclude secondary kappa rearrangements resulted in profound B cell depletion with absence of mature B cells in the bone marrow. We propose that the primary tolerogen of dual reactive B cells in this model is not ssDNA, but a strongly cross-linking tolerogen, presumably basement membrane laminin, that triggers recombination-activating gene activity, L chain editing, and deletion.  相似文献   

5.
6.
Prolactin is of interest in the pathogenesis of systemic lupus erythematosus (SLE) because almost 25% of SLE patients display hyperprolactinemia, and serum prolactin correlates with disease activity in some patients. Furthermore, hyperprolactinemia causes early mortality in lupus-prone mice and induces a lupus-like phenotype in nonspontaneously autoimmune mice. We show here that the immunomodulatory effects of prolactin are genetically determined; hyperprolactinemia breaks B cell tolerance and causes a lupus-like serology in BALB/c mice expressing a transgene encoding the H chain of an anti-DNA Ab but not in C57BL/6 transgenic mice. In C57BL/6 mice that express both the H chain transgene and the lupus susceptibility interval Sle3/5, prolactin induces increased serum titers of anti-DNA Ab and glomerular Ig depositions. The increase in costimulation due to prolactin-mediated up-regulation of both CD40 on B cells and CD40L on T cells would appear to play a central role in lupus induction in this model.  相似文献   

7.
The epitope corresponding to amino acid residues 147-161 of the nucleoprotein (NP) of influenza A virus is recognized by CTL in association with H-2Kd class I Ag. Herein, we engineered an Ig molecule carrying this CTL epitope by replacing the diversity gene segment of the H chain V region of an anti-arsonate antibody with an oligonucleotide that encodes the CTL epitope. The chimeric H chain gene was expressed either alone or together with the parental L chain in the nonsecreting BALB/c myeloma B cell line, SP2/0. The Ig produced by cells transfected with both the chimeric H chain and parental L chains genes expressed the NP epitope but lost the original arsonate binding activity. In addition, SP2/0 cells expressing the chimeric H chain either alone or together with the parental L chain were lysed by class I restricted NP-epitope specific CTL. By contrast, SP2/0 cells pulsed with soluble chimeric Ig molecules were not lysed by the specific CTL. These observations indicate that: 1) this particular CTL epitope can be expressed on Ig molecules without altering the H and L chain pairing; 2) this CTL epitope can be generated from this chimeric Ig in which it is surrounded by flanking regions distinct from those of the viral NP; and 3) the generation of this CTL epitope from the Ig molecule requires the endogenous pathway as do viral proteins.  相似文献   

8.
We have previously reported two anti-idiotypic antibodies, 3I and 8.12, that recognize L chain determinants on anti-DNA antibodies. We have generated a new anti-idiotypic antibody, F4, that recognizes a H chain determinant on cationic anti-DNA antibodies. F4 reactivity is present in high titer in serum of approximately 60% of SLE patients and on 84 of 706 myeloma proteins. It is preferentially associated with 3I reactive L chains. Furthermore, antibodies bearing both the F4 and 3I idiotypic determinants preferentially bind DNA. Amino acid sequencing of H chains isolated from four F4-reactive myeloma proteins suggests that they derive from two currently identified VH gene families. F4 reactivity is restricted almost exclusively to Ig of the IgG isotype suggesting that F4 may recognize either a somatically mutated hypervariable region or a variable region used late in the immune response. F4, therefore, represents a new idiotypic family preferentially associated with auto-Ag specificity and having features of an Ag-driven immune response.  相似文献   

9.
10.
An NZM2410-derived lupus susceptibility locus on murine chromosome 4, Sle2(z), has previously been noted to engender generalized B cell hyperactivity. To study how Sle2(z) impacts B cell tolerance, two Ig H chain site-directed transgenes, 3H9 and 56R, with specificity for DNA were backcrossed onto the C57BL/6 background with or without Sle2(z). Interestingly, the presence of the NZM2410 "z" allele of Sle2 on the C57BL/6 background profoundly breached B cell tolerance to DNA, apparently by thwarting receptor editing. Whereas mAbs isolated from the spleens of B6.56R control mice demonstrated significant usage of the endogenous (i.e., nontargeted) H chain locus and evidence of vigorous L chain editing; Abs isolated from B6.Sle2(z).56R spleens were largely composed of the transgenic H chain paired with a spectrum of L chains, predominantly recombined to J(k)1 or J(k)2. In addition, Sle2(z)-bearing B cells adopted divergent phenotypes depending on their Ag specificity. Whereas Sle2(z)-bearing anti-DNA transgenic B cells were skewed toward marginal zone B cells and preplasmablasts, B cells from the same mice that did not express the transgene were skewed toward the B1a phenotype. This work illustrates that genetic loci that confer lupus susceptibility may influence B cell differentiation depending on their Ag specificity and potentially contribute to antinuclear autoantibody formation by infringing upon B cell receptor editing. Taken together with a recent report on Sle1(z), these studies suggest that dysregulated receptor-editing of nuclear Ag-reactive B cells may be a major mechanism through which antinuclear Abs arise in lupus.  相似文献   

11.
Ig H and L chain contributions to autoimmune specificities   总被引:20,自引:0,他引:20  
An Ig H chain expression vector has been constructed by using the V region of 3H9, an antibody that binds ssDNA, dsDNA, and cardiolipin. The H chain construct was transfected into six hybridoma cell lines expressing Ig L chains. All resulting H and L chain combinations had at least some affinity for ssDNA, whereas five also bound dsDNA to a similar degree as 3H9. The loss of dsDNA binding was correlated with a single amino acid difference between two V kappa 8 L chains. A further characteristic of 3H9, its immunofluorescent staining pattern, was shared by four of the recombinant antibodies, whereas its specificity for cardiolipin was shared with five. The transfections reported here show that a V kappa 3 L chain confers specificity for an RNA-associated epitope and that a V kappa 21E L chain prevents cardiolipin binding. These experiments suggest that the 3H9 H chain contributes essential determinants required for binding to DNA as well as cardiolipin but that L chains can modulate or prevent this binding. L chains may also expand the specificity of a recombinant antibody.  相似文献   

12.
13.
Most mature B lymphocytes express one BCR L chain, kappa or lambda, but recent work has shown that there are exceptions in that some B lymphocytes express both kappa and lambda and some even bear two different kappa L chains. Using the anti-DNA H chain-transgenic mouse, 56R, we find that B cells with pre-existing autoreactivity are especially subject to L chain inclusion. Specifically, we show that isotypic and allelic inclusion enables autoreactive B cells to bypass central tolerance giving rise to B cells that retain dangerous features. One receptor in dual receptor B cells is an editor L chain, i.e., neutralizes or alters self-reactivity of the 56R H chain transgene. We compare the 56R mouse when on the C57/BL/6 background, a strain prone to autoimmunity, with that of 56R when on the BALB/c background, a strain that resists autoimmunity. In the B6.56R mouse, polyreactive B cells with dual L chain move to the follicular B cell compartment. Their localization in the follicular compartment may explain the ease with which B cells in the B6.56R differentiate into autoantibody-producing plasma cells. Likewise, in the BALB/c.56R mouse, dual L chain B cells are found in the follicular B cell compartment. Yet, the lack of autoantibody-producing plasma cells in the BALB/c.56R suggests that postfollicular tolerance checkpoints are intact. The Jkappa usage in dual kappa L chain B cells suggests increased receptor editing activity and is consistent with the expected distribution of Jkappa genes in our computational model for random selection of Jkappa.  相似文献   

14.
The V region sequences of two anti-DNA (A52, D42) and two anti-RNA (D44, D444) autoantibodies, derived from lupus prone NZB/NZW F1 female mice, were determined by mRNA sequencing. The sequences had the following features: 1) there was no clear sequence relationship between anti-DNA and anti-RNA antibodies; 2) there were no major similarities between any of the L chain sequences and each VL gene segment belonged to a different mouse VK subgroup; 3) the H chains of the two anti-RNA antibodies showed closely related sequences of VH gene segments and very similar third complementarity determining regions (CDR3); 4) the H chains of the two anti-DNA antibodies had VH segments belonging to different VH gene families but had a unique and similar combination of D segments and junctional sequences, suggesting a common recognition element for Ag and/or for idiotypic regulation in the H chain CDR3; and 5) the VH gene segment of one anti-DNA antibody (D42) was found to be very similar to the VH gene segment of a CBA mouse hybridoma antibody (6G6) which binds to the environmental Ag phosphocholine. The three-dimensional structure of the Fv-region of the anti-DNA antibody (D42) was modeled by computer and a stretch of poly(dT), ssDNA was docked to a cleft in the antibody combining site, formed by the three H chain CDR and by CDR1 and CDR3 of the L chain. The cleft is characterized by a preponderance of arginine and tyrosine residues, lining both the walls and base of the cleft.  相似文献   

15.
We have compared the pattern of somatic mutation in different immunoglobulin kappa transgenes and suggest that an element(s) located between 1 kb and 9 kb 3' of C kappa is necessary for somatic hypermutation of the antibody V gene. The sequences of transgenic and endogenous Ig V regions were determined in antigen-specific B cell hybridomas specific for 2-phenyloxazolone from independent lines of hyperimmunized transgenic mice. We analysed somatic mutation of the transgene both in hybridomas in which the transgenic kappa chain contributes to the antigen combining site as well as in hybridomas in which the transgene is a passenger with the expressed antibody being composed of endogenously-encoded heavy and light chains. In both cases, nucleotide changes in the transgene are correctly targeted to the V region and are absent from the C region. They accumulate at a similar rate to that in the endogenous Ig genes within the same cell and we find that, irrespective of whether or not the transgene kappa is directly selected by antigen, somatic mutation occurs at a similar rate and involves only single base substitutions. Furthermore, the pattern of mutations in passenger transgenes gives information about the intrinsic sequence specificities of the somatic hypermutation mechanism.  相似文献   

16.
In response to encounter with self-Ag, autoreactive B cells may undergo secondary L chain gene rearrangement (receptor editing) and change the specificity of their Ag receptor. Knowing at what differentiative stage(s) developing B cells undergo receptor editing is important for understanding how self-reactive B cells are regulated. In this study, in mice with Ig transgenes coding for anti-self (DNA) Ab, we report dsDNA breaks indicative of ongoing secondary L chain rearrangement not only in bone marrow cells with a pre-B/B cell phenotype but also in immature/transitional splenic B cells with little or no surface IgM (sIgM(-/low)). L chain-edited transgenic B cells were detectable in spleen but not bone marrow and were still found to produce Ab specific for DNA (and apoptotic cells), albeit with lower affinity for DNA than the unedited transgenic Ab. We conclude that L chain editing in anti-DNA-transgenic B cells is not only ongoing in bone marrow but also in spleen. Indeed, transfer of sIgM(-/low) anti-DNA splenic B cells into SCID mice resulted in the appearance of a L chain editor (Vlambdax) in the serum of engrafted recipients. Finally, we also report evidence for ongoing L chain editing in sIgM(low) transitional splenic B cells of wild-type mice.  相似文献   

17.
Mice implanted with hybridoma secreting 6-19 IgG3 anti-IgG2a rheumatoid factor (RF) with cryoglobulin activity develop acute glomerulonephritis and cutaneous leukocytoclastic vasculitis. As the RF activity is implicated in the skin, but not glomerular lesions, it is still unclear whether the renal pathogenicity is determined by 6-19 H chains alone or their combination with L chains. To address this question, we have generated transgenic mice expressing only the H chain gene or both H and L chain genes of the 6-19 IgG3 anti-IgG2a RF and determined the development of glomerular and vascular lesions. H-single and H/L-double transgenic mice displayed comparable high amounts of IgG3 cryoglobulins, but only H/L-double transgenic mice having 10-fold higher levels of IgG3 anti-IgG2a RF progressively developed chronic, lethal glomerulonephritis. The severe glomerular lesions observed at 8-10 mo of age were very heterogeneous (membranoproliferative changes, crescents, and sclerosis); in addition, one-third of them had necrotizing arteritis in the kidneys and skeletal muscles. These renal and vascular changes were very different from those observed in the acute cryoglobulinemia, characterized by mainly "wire-loop" glomerular lesions and a cutaneous leukocytoclastic form of vasculitis. Thus, our data demonstrate the importance of a unique combination of the H and L chains for the expression of the pathogenic activity of IgG3 cryoglobulins and that a single autoantibody is able to induce different types of glomerular and vascular complications, depending on its production levels and kinetics.  相似文献   

18.
BAFF inhibition is a new B cell-directed therapeutic strategy for autoimmune disease. Our purpose was to analyze the effect of BAFF/APRIL availability on the naive and Ag-activated B cell repertoires in systemic lupus erythematosus, using the autoreactive germline D42 H chain (glD42H) site-directed transgenic NZB/W mouse. In this article, we show that the naive Vκ repertoire in both young and diseased glD42H NZB/W mice is dominated by five L chains that confer no or low-affinity polyreactivity. In contrast, glD42H B cells expressing L chains that confer high-affinity autoreactivity are mostly deleted before the mature B cell stage, but are positively selected and expanded in the germinal centers (GCs) as the mice age. Of these, the most abundant is VκRF (Vκ16-104*01), which is expressed by almost all IgG anti-DNA hybridomas derived from the glD42H mouse. Competition with nonautoreactive B cells or BAFF/APRIL inhibition significantly inhibited selection of glD42H B cells at the late transitional stage, with only subtle effects on the glD42H-associated L chain repertoire. However, glD42H/VκRF-encoded B cells were still vastly overrepresented in the GC, and serum IgG anti-DNA Abs arose with only a slight delay. Thus, although BAFF/APRIL inhibition increases the stringency of negative selection of the naive autoreactive B cell repertoire in NZB/W mice, it does not correct the major breach in B cell tolerance that occurs at the GC checkpoint.  相似文献   

19.
B cells spontaneously process their endogenous Ig and present V region peptides on their MHC class II molecules. We have here investigated whether B cells collaborate with V region-specific CD4+ T cells in vivo. By use of paired Ig L chain-transgenic and TCR-transgenic mice and cell transfer into normal hosts, we demonstrate that B cell presentation of a V(L) region peptide to CD4+ T cells results in germinal centers, plasma cells, and Ab secretion. Because the transgenic B cells have a fixed L chain but polyclonal H chains, their B cell receptor (BCR) repertoire is diverse and may bind a multitude of ligands. In a hapten-based system, BCR ligation concomitant with V region-driven T-B collaboration induced germinal center formation and an IgM --> IgG isotype switch. In the absence of BCR ligation, mainly IgM was produced. Consistent with this, prolonged V region-driven T-B collaboration resulted in high titers of IgG autoantibodies against ubiquitous self-Ags, while natural-type Abs against exotic bacteria remained IgM. Taken together, V region-driven T-B collaboration may explain induction of natural IgM Abs (absence of BCR ligation) and IgG autoantibodies (BCR ligation by autoantigen) and may be involved in the development of autoimmunity.  相似文献   

20.
Inaccurate VDJ rearrangements generate a large number of progenitor (pro)-B cells with two nonproductive IgH alleles. Such cells lack essential survival signals mediated by surface IgM heavy chain (muH chain) expression and are normally eliminated. However, secondary rearrangements of upstream VH gene segments into assembled VDJ exons have been described in mice transgenic for productive muH chains, a process known as VH replacement. If VH replacement was independent of muH chain signals, it could also modify nonproductive VDJ exons and thus rescue pro-B cells with unsuccessful rearrangements on both alleles. To test this hypothesis, we homologously replaced the JH cluster of a mouse with a nonproductive VDJ exon. Surprisingly, B cell development in IgHVDJ-/VDJ- mice was only slightly impaired and significant numbers of IgM-positive B cells were produced. DNA sequencing confirmed that all VDJ sequences from muH chain-positive B lymphoid cells were generated by VH replacement in a RAG-dependent manner. Another unique feature of our transgenic mice was the presence of IgH chains with unusually long CDR3-H regions. Such IgH chains were functional and only modestly counter-selected, arguing against a strict length constraint for CDR3-H regions. In conclusion, VH replacement can occur in the absence of a muH chain signal and provides a potential rescue mechanism for pro-B cells with two nonproductive IgH alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号