首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To facilitate design of short isoenergetic hybridization probes for RNA, we report the influence of adding 5'- or 3'-terminal 2'-O-methylguanosine (GM), LNA-guanosine (GL), or 3'-terminal pyrene pseudo-nucleotide (PPN) on the thermodynamic stability of 2'-O-methyl-RNA/RNA (2'-O-Me-RNA/RNA) duplexes with sequences 5'CMGMGMCMAM/3'AAXGCCGUXAA, where X is A, C, G, or U. A 3'-terminal GM or GL added to the 2'-O-Me-RNA strand to form a G-A, G-G or G-U mismatch enhances thermodynamic stability (DeltaDeltaG degrees 37) of the 2'-O-Me-RNA/RNA duplexes on average by 0.7 and 1.5 kcal/mol, respectively. A 3'-terminal GM or GL in a GM-C or GL-C pair stabilizes the 2'-O-Me-RNA/RNA duplex by 2.6 and 3.4 kcal/mol, respectively. A 5'-terminal GM or GL in a G-A or G-G mismatch provided less stabilization in comparison with a 3'-terminal G-A or G-G mismatch, but more stabilization in a G-C or G-U pair. In contrast to guanosine derivatives, pyrene residue (P) as PPN at the 3'-terminal position enhances thermodynamic stability of the 2'-O-Me-RNA/RNA duplexes on average by 2.3 +/- 0.1 kcal/mol, relatively independent of the type of ribonucleotide placed in the opposite strand. The thermodynamic data can be applied to design 2'-O-Me-RNA/RNA duplexes with enhanced thermodynamic stability that is also sequence independent. This is useful for design of hybridization probes to interrogate RNA structure and/or expression by microarray and other methods.  相似文献   

2.
Mispair specificity of methyl-directed DNA mismatch correction in vitro   总被引:52,自引:0,他引:52  
To evaluate the substrate specificity of methyl-directed mismatch repair in Escherichia coli extracts, we have constructed a set of DNA heteroduplexes, each of which contains one of the eight possible single base pair mismatches and a single hemimethylated d(GATC) site. Although all eight mismatches were located at the same position within heteroduplex molecules and were embedded within the same sequence environment, they were not corrected with equal efficiencies in vitro. G-T was corrected most efficiently, with A-C, C-T, A-A, T-T, and G-G being repaired at rates 40-80% of that of the G-T mispair. Correction of each of these six mispairs occurred in a methyl-directed manner in a reaction requiring mutH, mutL, and mutS gene products. C-C and A-G mismatches showed different behavior. C-C was an extremely poor substrate for correction while repair of A-G was anomalous. Although A-G was corrected to A-T by the mutHLS-dependent, methyl-directed pathway, repair of A-G to C-G occurred largely by a pathway that is independent of the methylation state of the heteroduplex and which does not require mutH, mutL, or mutS gene products. Similar results were obtained with a second A-G mismatch in a different sequence environment suggesting that a novel pathway may exist for processing A-G mispairs to C-G base pairs. As judged by DNase I footprint analysis, MutS protein is capable of recognizing each of the eight possible base-base mismatches. Use of this method to estimate the apparent affinity of MutS protein for each of the mispairs revealed a rough correlation between MutS affinity and efficiency of correction by the methyl-directed pathway. However, the A-C mismatch was an exception in this respect indicating that interactions other than mismatch recognition may contribute to the efficiency of repair.  相似文献   

3.
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides that bind duplex A-T or G-C base pair DNA sequences specifically at homopurine sites in the major groove as T·A-T and C+ ·G-C triplets. Here we report the successful modelling of novel unnatural nucleosides that recognize the C-G DNA base pair by Hoogsteen-like major groove interaction. These novel Hoogsteen nucleotides are examined within model A-type and B-type conformation triplex structures since the DNA triplex can be considered to incorporate A-type and/or B-type configurational properties. Using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration, a triplet comprised of a C-G base pair and the novel Hoogsteen nucleotide, Y2, replaces the central T·A-T triplet in the triplex. The presence of any structural or energetic perturbations due to the central triplet in the energy-minimized triplex is assessed with respect to the unmodified energy minimized (T·A-T)11 starting structures. Incorporation of this novel triplet into both A-type and B-type natural triplex structures provokes minimal change in the configuration of the central and adjacent triplets.  相似文献   

4.
Selective recognition of a C-G base-pair within the parallel DNA triple-helical binding motif was achieved by a third strand containing the base 5-methyl pyrimidin-2-one. The third strand affinities (K(D)) for a representative 15-mer duplex sequence containing all four Watson-Crick base pairs (X-Y) in the center are C-G (26 nM) > A-T (270 nM) approximately T-A (350 nM) > G-C (ca 700 nM).  相似文献   

5.
A detailed mutational analysis of the eucaryotic tRNAmet1 gene promoter   总被引:29,自引:0,他引:29  
W R Folk  H Hofstetter 《Cell》1983,33(2):585-593
  相似文献   

6.
Binding of Escherichia coli signal recognition particle (SRP) to its receptor, FtsY, requires the presence of 4.5S RNA, although FtsY alone does not interact with 4.5S RNA. In this study, we report that the exchange of the GGAA tetraloop sequence in domain IV of 4.5S RNA for UUCG abolishes SRP-FtsY interaction, as determined by gel retardation and membrane targeting experiments, whereas replacements with other GNRA-type tetraloops have no effect. A number of other base exchanges in the tetraloop sequence have minor or intermediate inhibitory effects. Base pair disruptions in the stem adjacent to the tetraloop or replacement of the closing C-G base pair with G-C partially restored function of the otherwise inactive UUCG mutant. Chemical probing by hydroxyl radical cleavage of 4.5S RNA variants show that replacing GGAA with UUCG in the tetraloop sequence leads to structural changes both within the tetraloop and in the adjacent stem; the latter change is reversed upon reverting the C-G closing base pair to G-C. These results show that the SRP-FtsY interaction is strongly influenced by the structure of the tetraloop region of SRP RNA, in particular the tetraloop stem, and suggest that both SRP RNA and Ffh undergo mutual structural adaptation to form SRP that is functional in the interaction with the receptor, FtsY.  相似文献   

7.
Analysis of local helix geometry in three B-DNA decamers and eight dodecamers   总被引:16,自引:0,他引:16  
Local variations in B-DNA helix structure are compared among three decamers and eight dodecamers, which contain examples of all ten base-pair step types. All pairwise combinations of helix parameters are compared by linear regression analysis, in a search for internal relationships as well as correlations with base sequence. The primary conclusions are: (1) Three-center hydrogen bonds between base-pairs occur frequently in the major groove at C-C, C-A, A-A and A-C steps, but are less convincing at C-C and C-T steps in the minor groove. The requirements for large base-pair propeller are (1) that the base-pair should be A.T rather than G.C, and (2) that it be involved in a major groove three-center hydrogen bond with the following base-pair. Either condition alone is insufficient. Hence, a large propeller is expected at the leading base-pair of A-A and A-C steps, but not at A-T, T-A, C-A or C-C steps. (2) A systematic and quantitative linkage exists between helix variables twist, rise, cup and roll, of such strength that the rise between base-pairs can hardly be described as an independent variable at all. Two typical patterns of behavior are observed at steps from one base-pair to the next: high twist profile (HTP), characterized by high twist, low rise, positive cup and negative roll, and low twist profile (LTP), marked by low twist, high rise; negative cup and positive roll. Examples of HTP are steps G-C, G-A and Y-C-A-R, where Y is pyrimidine and R is purine. Examples of LTP steps are C-G, G-G, A-G and C-A steps other than Y-C-A-R. (3) The minor groove is especially narrow across the two base-pairs of the following steps: A-T, T-A, A-A and G-A. (4) In general, base step geometry cannot be correlated solely with the bases that define the step in question; the two flanking steps also must be taken into account. Hence, local helix structure must be studied in the context, not of two base-pairs: A-B, but of four: x-A-B-y. Calladine's rules, although too simple in detail, were correct in defining the length of sequence over which a given perturbation is expressed. Whereas ten different two-base steps are possible, allowing for the identity of complementary sequences, there are 136 different four-base steps. Only 33 of these 136 four-base steps are represented in the decamer and dodecamer structures solved to date, and hence it is premature to try to set up detailed structural algorithms. (5) The sugar-phosphate backbone chains of B-DNA place strong limits on sequence-induced structural variation, damping down most variables within four or five base-pairs, and preventing purine-purine anti-anti mismatches from causing bulges in the double helix. Hence, although short-range sequence-induced deformations (or deformability) are observed, long-range deformations propagated down the helix are not to be expected.  相似文献   

8.
The 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin-4-amine) N(8)-(2'-deoxyribonucleoside) (2) which has an unusual glycosylation position was introduced as a universal nucleoside in oligonucleotide duplexes. These oligonucleotides were prepared by solid-phase synthesis employing phosphoramidite chemistry. Oligonucleotides incorporating the universal nucleoside 2 are capable of forming base pairs with the four normal DNA nucleosides without significant structural discrimination. The thermal stabilities of those duplexes are very similar and are only moderately reduced compared to those with regular Watson-Crick base pairs. The universal nucleoside 2 belongs to a new class of compounds that form bidentate base pairs with all four natural DNA constituents through hydrogen bonding. The base pair motifs follow the Watson-Crick or the Hoogsteen mode. Also an uncommon motif is suggested for the base pair of 2 and dG. All of the new base pairs have a different shape compared to those of the natural DNA but fit well into the DNA duplex as the distance of the anomeric carbons approximates those of the common DNA base pairs.  相似文献   

9.
10.
Oligodeoxynucleotides with an internal intercalating agent have been targeted to single-stranded sequences containing hairpin structures. The oligonucleotide binds to nonadjacent single-stranded sequences on both sides of the hairpin structure in such a way as to form a three-way junction. The acridine derivative is inserted at a position that allows it to interact with the three-way junction. The melting temperature (Tm) of complexes formed between the hairpin-containing target and oligonucleotides containing one internal acridine derivative was higher than that obtained with the same target and an unmodified oligonucleotide (DeltaTm = +13 degrees C). The internal acridine provided the oligonucleotide with a higher affinity than covalent attachment to the 5' end. Oligonucleotides could also be designed to recognize a hairpin-containing single-stranded nucleic acid by formation of Watson-Crick hydrogen bonds with a single-stranded part and Hoogsteen hydrogen bonds with the stem of the hairpin. An internal acridine derivative was introduced at the junction between the two domains, the double helix domain with Watson-Crick base pairs and the triple helix domain involving Hoogsteen base triplets in the major groove of the hairpin stem. Oligonucleotides with an internal acridine or an acridine at their 5' end have similar binding affinities for the stem-loop-containing target. The bis-modified oligonucleotide containing two acridines, one at the 5' end and one at an internal site, did not exhibit a higher affinity than the oligonucleotides with only one intercalating agent. The design of oligonucleotides with an internal intercalating agent might be of interest to control gene expression through recognition of secondary structures in single-stranded targets.  相似文献   

11.
A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-)oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be) stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa) prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications.  相似文献   

12.
Improved free energies for G.C base-pairs   总被引:2,自引:0,他引:2  
Thermodynamic parameters of helix formation are reported for seven oligoribonucleotides containing only G.C pairs. These data are used with the nearest-neighbor model to calculate enthalpies and free energies of base-pair formation for G.C pairs. For helix initiation, the free energy change at 37 degrees C, delta G(0)37, is +3.9 kcal/mol; for helix propagation, the delta G(0)37 values are -2.3, -3.2 and -3.3 kcal/mol for C-G, G-G and G-C neighbors, respectively.  相似文献   

13.
Stacking interaction between the aromatic heterocyclic bases plays an important role in the double helical structures of nucleic acids. Considering the base as rigid body, there are total of 18 degrees of freedom of a dinucleotide step. Some of these parameters show sequence preferences, indicating that the detailed atomic interactions are important in the stacking. Large variants of non‐canonical base pairs have been seen in the crystallographic structures of RNA. However, their stacking preferences are not thoroughly deciphered yet from experimental results. The current theoretical approaches use either the rigid body degrees of freedom where the atomic information are lost or computationally expensive all atom simulations. We have used a hybrid simulation approach incorporating Monte‐Carlo Metropolis sampling in the hyperspace of 18 stacking parameters where the interaction energies using AMBER‐parm99bsc0 and CHARMM‐36 force‐fields were calculated from atomic positions. We have also performed stacking energy calculations for structures from Monte‐Carlo ensemble by Dispersion corrected density functional theory. The available experimental data with Watson–Crick base pairs are compared to establish the validity of the method. Stacking interaction involving A:U and G:C base pairs with non‐canonical G:U base pairs also were calculated and showed that these structures were also sequence dependent. This approach could be useful to generate multiscale modeling of nucleic acids in terms of coarse‐grained parameters where the atomic interactions are preserved. This method would also be useful to predict structure and dynamics of different base pair steps containing non Watson–Crick base pairs, as found often in the non‐coding RNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 212–226, 2016.  相似文献   

14.
The solution conformation of three related DNA hairpins, each with five bases in the loop, is investigated by proton and phosphorus 2D NMR methods. The sequences of the three oligomers are d(CGCGTTGTTCGCG), d(CGCGTTTGTCGCG), and d(CTGCTCTTGTTGAGCAG). One pair of hairpins shares the same stem sequence but differs in the loop, and the appearance of an unusual phosphate torsion in the stem is found to depend on the sequence in the loop of the hairpin. The second pair of hairpins shares the same loop region but differs in the stem sequence in that the base pair which closes the loop is a C-G or G-C pair. The pattern of NOEs reveals that the stacking arrangement in the loop region depends on the base pair that closes the stem. These results suggest that hairpin loop conformation and dynamics are sensitive to small changes in the loop and adjacent stem sequences. These findings are discussed in relation to sequence-dependent thermodynamic changes that have been observed in RNA hairpins.  相似文献   

15.
As a part of our interest in recognition and cleavage of RNA we carried out thermal melting studies with the aim of screening a number of simple oligonucleotide modifications for their potential as modifying elements for RNA bulge stabilizing oligonucleotides. A specific model system from our studies on oligonucleotide-based artificial nuclease (OBAN) systems was chosen and the bulge size was varied from one to five nucleotides. Introduction of single 2'-modified nucleoside moieties (2'-O-methyl, 2'-deoxy and 2'-deoxy-2'-amino) with different conformational preferences adjacent to the bulge revealed that a higher preference for the north conformers gave more stable bulges across the whole range of bulge sizes. Changing a bulge closing a G-U wobble base pair to a G-C pair resulted in the interesting observation that, although the fully complementary complex and small bulges were highly stabilized, there was little difference in the stability of the larger bulges. The wobble base pair even gave a slight stabilization of the 5 nt bulge system. Introduction of a uridine C-5 linker with a single ammonium group was clearly bulge stabilizing (DeltaT(m) + 4.6 to + 5.4 degrees C for the three most stabilized bulges), although with limited selectivity for different bulge sizes since the fully complementary duplex was also stabilized. Introduction of a naphthoyl group on a 2'-aminolinker mostly gave a destabilizing effect, while introduction of a 5-aminoneocuproine moiety on the same linker resulted in stabilization of all bulges, in particular those with two or four unpaired nucleotides (DeltaT(m) + 3.6 and + 2.9 degrees C respectively). The aromatic groups destabilize the fully complementary duplex, resulting in higher selectivity towards stabilization of bulges. A combination of the studied partial element should be suitable for future designs of modified oligonucleotides that, apart from standard base pairing, can also provide additional non-Watson-Crick recognition of RNA.  相似文献   

16.
Deinococcus radiodurans RNA ligase (DraRnl) is the founding member of a family of end-joining enzymes encoded by diverse microbes and viruses. DraRnl ligates 3′-OH, 5′-PO4 nicks in double-stranded nucleic acids in which the nick 3′-OH end is RNA. Here we gauge the effects of 3′-OH and 5′-PO4 base mispairs and damaged base lesions on the rate of nick sealing. DraRnl is indifferent to the identity of the 3′-OH nucleobase, provided that it is correctly paired. With 3′-OH mispairs, the DraRnl sealing rate varies widely, with G-T and A-C mispairs being the best substrates and G-G, G-A, and A-A mispairs being the worst. DraRnl accepts 3′ A–8-oxoguanine (oxoG) to be correctly paired, while it discriminates against U-oxoG and G-oxoG mispairs. DraRnl displays high activity and low fidelity in sealing 3′-OH ends opposite an 8-oxoadenine lesion. It prefers 3′-OH adenosine when sealing opposite an abasic template site. With 5′-PO4 mispairs, DraRnl seals a 5′ T-G mispair as well as it does a 5′ C-G pair; in most other respects, the ligation fidelity at 5′ mispairs is similar to that at 3′ mispairs. DraRnl accepts a 5′ A-oxoG end to be correctly paired, yet it is more tolerant of 5′ T-oxoG and 5′ G-oxoG mispairs than the equivalent configurations on the 3′ side of the nick. At 5′ nucleobase-abasic site nicks, DraRnl prefers to ligate when the nucleobase is a purine. The biochemical properties of DraRnl are compatible with its participation in the templated repair of RNA damage or in the sealing of filled DNA gaps that have a 3′ ribopatch.  相似文献   

17.
The hydration patterns around the RNA Watson-Crick and non-Watson-Crick base pairs in crystals are analyzed and described. The results indicate that (i) the base pair hydration is mostly "in-plane"; (ii) eight hydration sites surround the Watson-Crick G-C and A-U base pairs, with five in the deep and three in the shallow groove, an observation which extends the characteristic isostericity of Watson-Crick pairs; (iii) while the hydration around G-C base pairs is well defined, the hydration around A-U base pairs is more diffuse; (iv) the hydration sites close to the phosphate groups are the best defined and the most recurrent ones; (v) a string of water molecules links the two shallow groove 2'-hydroxyl groups, and (vi) the water molecules fit into notches, the size and accessibility of which are almost as important as the number and strength of the hydrophilic groups lining the cavity. Residence times of water molecules at specific hydration sites, inferred from molecular dynamics simulations, are discussed in the light of present data.  相似文献   

18.
Hannah KC  Gil RR  Armitage BA 《Biochemistry》2005,44(48):15924-15929
A symmetrical cyanine dye was previously shown to bind as a cofacial dimer to alternating A-T sequences of duplex DNA. Indirect evidence suggested that dimerization of the dye occurred in the minor groove. 1H NMR experiments reported here verify this model based on broadening and shifting of signals due to protons on carbon 2 of adenine and imino protons at the central five A-T pairs of the 11 base pair duplex: 5'-GCGTATATGCG-3'/3'-CGCATATACGC-5'. This binding mode is similar to that of distamycin A, even though the dye lacks the hydrogen-bonding groups used by distamycin for sequence-specific recognition. Surprisingly, the third base pair (G-C) was also implicated in the binding site. UV-vis experiments were used to compare the extent of dimerization of the dye for 11 different sequence variants. These experiments verified the importance of a G-C pair at the third position: replacing this pair with A-T suppressed dimerization. These results indicate that the dye binding site spans six base pairs: 5'-GTATAT-3'. The initial G-C pair seems to be important for widening the minor groove rather than for making important contacts with the dye molecules since inverting its orientation to C-G or replacing it with I-C still led to favorable dimerization of the dye.  相似文献   

19.
The DNA microarray technology is a well-established and widely used technology although it has several drawbacks. The accurate molecular recognition of the canonical nucleobases of probe and target is the basis for reliable results obtained from microarray hybridization experiments. However, the great flexibility of base pairs within the DNA molecule allows the formation of various secondary structures incorporating Watson-Crick base pairs as well as non-canonical base pair motifs, thus becoming a source of inaccuracy and inconsistence. The first part of this report provides an overview of unusual base pair motifs formed during molecular DNA interaction in solution highlighting selected secondary structures employing non-Watson-Crick base pairs. The same mispairing phenomena obtained in solution are expected to occur for immobilized probe molecules as well as for target oligonucleotides employed in microarray hybridization experiments the effect of base pairing and oligonucleotide composition on hybridization is considered. The incorporation of nucleoside derivatives as close shape mimics of the four canonical nucleosides into the probe and target oligonucleotides is discussed as a chemical tool to resolve unwanted mispairing. The second part focuses non-Watson-Crick base pairing during hybridization performed on microarrays. This is exemplified for the unusual stable dG.dA base pair.  相似文献   

20.
D Alkema  P A Hader  R A Bell  T Neilson 《Biochemistry》1982,21(9):2109-2117
A series of pentaribonucleotides, ApGpXpGpU (where X identical to A, G, C, or U), was synthesized to investigate the effects of flanking G . C pairs on internal Watson-Crick, G . U, and nonbonded base pairs. Sequences ApGpApCpU (Tm = 26 degrees C) and ApGpCpCpU (Tm = 25 degrees C) were each found to form a duplex with non-base-paired internal residues that stacked with the rest of the sequence but were not looped out. ApGpGpCpU also forms a duplex (Tm = 30 degrees C) but with dangling terminal nonbonded adenosines rather than internal nonbonded guanosines. ApGpUpCpU prefers a stacked single-strand conformation. In addition, contribution to duplex stability from an internal A . U or G . C base pair is enhanced by 6 degrees C when flanked by G . C base pairs as compared to A . U base pairs. G . C base pairs flanking an internal G . U base pair were found to be more tolerant to the altered conformation of a G . U pair and result in an increase to stability comparable with that found for an internal A . U base pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号