首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental colonies of honey bees consisting of two patrilines were observed as they reared worker brood. Seven behavior patterns that relate to brood care were recorded. Worker bees biased the care they provided to eggs and larvae destined to become workers on the basis of brood patrilines. Both patrilineal and antipatrilineal preferences in various behavioral patterns were observed. There was variation among colonies that may have been the result of the frequencies of brood of each patriline and the total amount of brood available to be reared. In addition, there were some differences between workers of the two patrilines in the way that they cared for the two patrilines of brood.  相似文献   

2.
Summary In queenright colonies of Apis mellifera, worker policing normally eliminates worker-laid eggs thereby preventing worker reproduction. However, in queenless colonies that have failed to rear a replacement queen, worker reproduction is normal. Worker policing is switched off, many workers have active ovaries and lay eggs, and the colony rears a last batch of male brood before dying out. Here we report a colony which, when hopelessly queenless, did not stop policing although a high proportion of workers had active ovaries (12.6%) and many eggs were laid. However, all these eggs and also worker-laid eggs transferred from another colony were policed. This unusual pattern was repeated eight weeks later by a second queenless colony made using worker bees from the same mother colony, which strongly suggests genetic determination.Received 19 May 2003; revised 11 September 2003; accepted 23 September 2003.  相似文献   

3.
Honey bee workers normally produce brood food at an age of 5 to 15 days. However, natural events like swarming or brood diseases may lead to the occurrence of over-aged nurses. Here we investigated the physiological consequences of prolonged nursing for both the nurses and the brood they rear, and tried to separate the effects of chronological age and of task affiliation on some important physiological parameters. Brood was reared in groups of colonies with either a normal age structure or with moderately over-aged workers.The haemolymph concentrations of total protein and vitellogenin, the development of mandibular and hypopharyngeal glands, and the activity of α-glucosidase in the hypopharyngeal glands of nurses from these groups of colonies were compared. Moreover, we used the fertility of young workers reared by normal- and overaged nurses as a bioindicator for the quality of the brood care they had received. It showed that parameters linked to the production of brood food proteins remained stable in over-aged nurses, whereas the development of mandibular glands regressed. Workers reared by over-aged nurses had more ovarioles and showed stronger ovary development under queenless conditions. Our results indicate that while over-aged nurses remain capable of producing brood food, they are not functionally equivalent to young nurses. The partial degeneration of the mandibular glands normally occurring at the end of the nursing period cannot be prevented by prolonged nursing. The distinct phenotype of workers reared by old nurses raises the question of possible age-related specialisations among nurses in colonies with a normal age structure. Received 14 July 2008; revised 18 November 2008; accepted 21 November 2008.  相似文献   

4.
The parasitic mite Varroa jacobsoni Oud. reproduces in sealed honey bee brood cells. Within worker cells a considerable fraction of the mites do not produce offspring. It is investigated whether variation in the ratio of cells without reproduction is caused by properties of the worker brood, or by the state of the mites entering cells. Pieces of brood comb were taken from colonies of 12 different bee lines and were placed simultaneously into highly infested colonies. Non-reproduction was independent of the origin of the brood pieces, indicating a minor role of a variation due to different brood origin. Between colonies used for infestation, however, it differed considerably. A comparison of the proportion of cells without reproduction when infested by one Varroa mite or when infested by two or three Varroa mites showed, that non-reproduction was mainly related to the state of the mites entering cells, and only to a minor degree to an influence of the brood cells. A high ratio of worker cells without reproduction was consistently reported in bee lines which survive the disease without treatment, and a high level of non-reproduction is thus regarded to be a key factor in breeding bees for high Varroa tolerance. The current results indicate, that differences in this trait are only to a minor degree related to differences between bee lines in the ability of the bee brood to induce oviposition. These differences seem rather to depend on other, unknown colony factors influencing the reproductive state of Varroa when they enter cells for reproduction.  相似文献   

5.
During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de‐queened colonies and determined the maternity of larvae and pupae that were reared as queens. This allowed us to determine how soon after queen loss workers contribute to the production of new queens. We were further interested to see if workers would preferentially raise new queens from queen‐laid brood if this was introduced later. We performed our manipulations in two different settings: an apiary setting where colonies were situated close together and a more natural situation in which the colonies were well separated. This allowed us to determine how the vicinity of other colonies affects the presence of parasites. We found that workers do indeed contribute to queen cell production immediately after the loss of their queen, thus demonstrating that some workers either have activated ovaries even when their colony has a queen or are able to activate their ovaries extremely rapidly. Queen‐laid brood introduced days after queen loss was ignored, showing that workers do not prefer to raise new queens from queen brood when given a choice. We also detected non‐natal parasitism of queen cells in both settings. We therefore conclude that some A. m. capensis genotypes specialize in parasitizing queen cells.  相似文献   

6.
African honeybees, Apis mellifera, are characterised by frequent disturbance-induced absconding. However, the effectiveness in preparation before such disturbance-induced absconding has not been rigorously quantified yet. We investigated the effectiveness of preparation for disturbance-induced absconding by evaluating colony phenotypes prior to and after absconding in ten colonies of the Cape honeybee, A. m. capensis. Seven non-absconding colonies at the same apiary were used as controls. While seven absconded colonies left neither stores nor brood behind, three colonies abandoned only a small area of honey, pollen, open or capped brood. At the end of the observations, the control colonies still had pollen and honey stores and brood. The mean reduction rate between a major disturbance and the absconding event was 0.052 ± 0.018 cm2 stores and open brood per worker per day. Our results demonstrate that disturbance-induced absconding can also occur with preparation, if the disturbance is not highly destructive and enough time for preparation is available. We conclude that Cape honeybee colonies can show a considerable high effectiveness in their preparation before disturbance-induced absconding, which limits the loss of colony resources. In light of the general high mobility of African honeybee colonies such an efficient behaviour is probably adaptive. Received 22 December 2004; revised 3 June 2005; accepted 13 June 2005.  相似文献   

7.
Animal societies vary in the number of breeders per group, which affects many socially and ecologically relevant traits. In several social insect species, including our study species Formica selysi, the presence of either one or multiple reproducing females per colony is generally associated with differences in a suite of traits such as the body size of individuals. However, the proximate mechanisms and ontogenetic processes generating such differences between social structures are poorly known. Here, we cross‐fostered eggs originating from single‐queen (= monogynous) or multiple‐queen (= polygynous) colonies into experimental groups of workers from each social structure to investigate whether differences in offspring survival, development time and body size are shaped by the genotype and/or prefoster maternal effects present in the eggs, or by the social origin of the rearing workers. Eggs produced by polygynous queens were more likely to survive to adulthood than eggs from monogynous queens, regardless of the social origin of the rearing workers. However, brood from monogynous queens grew faster than brood from polygynous queens. The social origin of the rearing workers influenced the probability of brood survival, with workers from monogynous colonies rearing more brood to adulthood than workers from polygynous colonies. The social origin of eggs or rearing workers had no significant effect on the head size of the resulting workers in our standardized laboratory conditions. Overall, the social backgrounds of the parents and of the rearing workers appear to shape distinct survival and developmental traits of ant brood.  相似文献   

8.
In polyandrous social insects such as honey bees, a worker’s affinity for a particular task may be genetically infl uenced and so some patrilines may have lower stimulus thresholds for commencing a task than others. We used simulation models to investigate the effects of intracolonial diversity in the task thresholds that stimulate workers to engage in heating and cooling during nest thermoregulation. First, we simulated colonies comprised of one or 15 patrilines that were engaged in heating the brood nest, and observed that single patriline colonies maintained, on average, less stable brood nest temperatures than multiple patriline colonies. Second we simulated colonies with five patrilines that were engaged in cooling their nest, recording the proportions of bees of different patrilines that engaged in nest cooling in response to changing temperatures. Both of our simulations show remarkably similar qualitative patterns to those that we have previously observed empirically. This provides further support for the hypothesis that geneticallybased variability in task thresholds among patrilines within honey bee colonies is an important contributor to the ability of colonies to precisely thermoregulate their nests, and we suggest that diversity is important for optimal expression of a range of other colony-level phenotypes. Received 17 June 2005; revised 27 October 2005; accepted 23 December 2005.  相似文献   

9.
Anarchistic queen honey bees have normal queen mandibular pheromones   总被引:3,自引:0,他引:3  
Summary. Anarchistic honey bees are a line developed by recurrent selection in which workers frequently lay eggs. In unselected colonies, workers refrain from reproduction in response to pheromonal signals that indicate the presence of brood and a queen. We show that queen type (anarchistic or wild type) has no effect on rates of ovary activation of anarchistic or wild type workers. In addition, we show that an important component of the queens signalling system, the queen mandibular gland pheromone, is similar in wild type and anarchistic queens. Anarchistic larvae do not inhibit worker ovary development to the same degree as wild type larvae, however all colonies in this experiment contained only wild type larvae. Anarchistic workers had greater rates of ovary activation than wild type workers in colonies headed by either queen type. We therefore conclude that there must be differences in the transmission or reception of queen pheromones, or worker sensitivity to these compounds. These results clearly demonstrate that anarchy is a complex syndrome, not simply the result of reduced pheromone production by anarchist queens and larvae.Received 23 December 2003; revised 14 May 2004; accepted 1 June 2004.  相似文献   

10.
When a honey bee colony becomes queenless and broodless its only reproductive option is for some of its workers to produce sons before the colony perishes. However, for this to be possible the policing of worker-laid eggs must be curtailed and this provides the opportunity for queenless colonies to be reproductively parasitized by workers from other nests. Such reproductive parasitism is known to occur in Apis florea and A. cerana. Microsatellite analyses of worker samples have demonstrated that the proportion of non-natal workers present in an A. cerana colony declines after a colony is made queenless. This observation suggests that queenless A. cerana colonies may be more vigilant in repelling potentially parasitic non-natal workers than queenright colonies. We compared rates of nestmate and non-nestmate acceptance in both queenright and queenless A. cerana colonies using standard assays and showed that there is no statistical difference between the proportion of non-nestmate workers that are rejected in queenless and queenright colonies. We also show that, contrary to earlier reports, A. cerana guards are able to discriminate nestmate workers from non-nestmates, and that they reject significantly more non-nestmate workers than nestmate workers. Received 25 February 2008; revised 21 May 2008; accepted 25 June 2008.  相似文献   

11.
Most social insect species enlarge their nests gradually and in close correlation with the growing need for space for brood and/or stored food. In contrast, some species of swarm-founding eusocial wasps construct the nest rapidly to a final size in the first two to three weeks of the founding stage. We considered four hypotheses on the functions of rapid nest construction in the wasp Polybia occidentalis and directly tested two of them. The first hypothesis is that rapid construction maximizes output of the worker force when there are few other work demands; it predicts that construction rate remains high until the first eggs begin to hatch, following which it declines as increasing amounts of worker effort are allocated to the feeding of larvae. The second says that rapid nest construction minimizes the time the adults in the swarm are exposed to predation and the elements; it predicts that nest-construction rate should drop steeply after the nest is large enough to house all the adults in the swarm. We measured pulp-foraging rates for the first 12 days of the founding stage in control colonies and in colonies whose nests we manipulated to prevent housing of the swarm. The treatment and control groups did not differ in construction rate for several days following the housing event, contradicting the adult-protection hypothesis. Late in nest construction, treatment colonies were building at significantly higher rates than were control colonies. If demand for brood care were a major factor in determining construction rate, both groups would have responded to the eclosion of larvae in the same way and shown a parallel decline in construction rate, but this did not happen. Instead, the patterns of nest construction rate we observed provided indirect support for the two remaining hypotheses. The first of these is that rapid construction minimizes exposure of the brood to natural enemies and desiccation. The second is that rapid construction promotes competition among queens by providing empty cells for oviposition, thereby facilitating the selecting out of the less fecund of the multiple reproductive females. Also consistent with this hypothesis is the apparent absence of explosive nest construction in monogynous, eusocial bees. Received 13 October 2007; revised 31 March 2008; accepted 6 April 2008.  相似文献   

12.
Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honeybee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 ± 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 ± 8.4%) and adult bees (3.5 ± 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83–96%) than in AHB in Brazil(25–57%), and similar to that found in EHB (76–94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The visitation pattern by worker honey bees to cells in the brood nest was monitored on an artificially created brood pattern consisting of about one-fourth brood cells evenly distributed among empty cells. The majority (63 %) of the observed workers selectively entered larval cells. In contrast, some workers avoided egg cells when presented a choice of egg vs empty cells. The results suggest that larvae produce a general signal indicating their presence to worker bees. Eggs also seem to produce a signal, which is perceived to be different from the one from larvae.  相似文献   

14.
Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

15.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

16.
Summary In the polyandrous honey bee, Apis mellifera, workers can potentially increase their inclusive fitness by rearing full-sister queens. If the mother queen dies suddenly, workers feed a few larvae in worker cells with royal jelly and rear them into queens (emergency queen rearing). Using DNA microsatellite markers we determined the patriline of emergency queens reared in two colonies headed by naturally-mated queens before being made queenless. We found that some patrilines were reared more than others in one colony, but not in the other. These differences between colonies suggest that selective rearing is not always present and this might explain the mixed results of previous nepotism studies in the honey bee.Received 10 February 2003; revised 7 March 2003; accepted 17 March 2003.  相似文献   

17.
Greenhouse tomatoes, Lycopersicon esculentum Miller (Solanaceae), are autogamous, but facilitated pollination results in increased fruit size and set. Previous research examining honey bee pollination in greenhouse tomato crops established that fruit quality resulting from honey bee visitation is often comparable to bumble bees (Bombus spp.) and significantly better than in flowers that receive no facilitated pollination. However, management alternatives have not been studied to improve tomato fruit quality when honey bees are the only pollination option available for the high-value greenhouse industry. We investigated whether the quantity of brood (eggs, larvae, and pupae) in a honey bee colony in the winter and screening on greenhouse vents in the summer would encourage honey bee foraging on tomato flowers. We also established the influence of time of year on the potential for honey bees to be effective pollinating agents. We constructed small honey bee colonies full of naive forager bees with either two frames of brood ("brood colonies") or two empty frames ("no-brood") and compared total fruit set and the number of tomato seeds resulting from fruit potentially visited by honey bees in each of these treatments to bagged flowers that received no facilitated pollination. There was no significant difference in the quality of fruit resulting from honey bees from "brood" and "no-brood" colonies. However, these fruits produced significantly more seeds than bagged flowers restricted from facilitated pollination. Honey bees from brood and no-brood colonies also resulted in 98% fruit set compared with 80% fruit set in bagged flowers that received no facilitated pollination. During the summer, the number of seeds per fruit did not differ significantly between unbagged flowers potentially visited by honey bees in screened greenhouses and unscreened greenhouses and bagged flowers that received no facilitated pollination. However, time of year did have a significant influence on the quality of fruit produced by honey bees compared with flowers that received no facilitated pollination, because no difference in seed number was observed between the treatments after mid-April. The results from this study demonstrate that the management of brood levels and vent screening cannot be used to improve the quality of fruit resulting from honey bee pollination and that honey bees can be a feasible greenhouse pollination alternative only during the winter.  相似文献   

18.
This study was conducted in the Assir region of southwestern Saudi Arabia to compare the activities of honeybee colonies of indigenous Apis mellifera jemenitica (AMJ) and imported Apis mellifera carnica (AMC) during the late summer and autumn of 2009 and 2010. The results showed that the workers of the two races exhibited relatively similar forage timings throughout the period of study (August–November). The highest numbers of foraged workers were recorded at 6:00 am, 10:00 am and 6:00 pm, while the lowest numbers were recorded at 8:00 am, 12:00 pm and 4:00 pm. Although foraging activity was negatively affected by decreased temperature, AMJ was more resistant to cold than AMC. In the first season, the smallest amount of worker brood rearing was recorded in August, and the highest amount of rearing occurred in November in both races. In the second season, the smallest amount of brood was observed in October, and the largest amount of brood was observed in November. Brood rearing and pollen collecting was significantly (P < 0.05) higher in AMJ compared with AMC, while AMC stored significantly (P < 0.05) more honey than AMJ during the tested periods. In AMJ colonies, a positive significant correlation was observed between the area of the sealed worker brood and stored pollen, while a negative but nonsignificant correlation was observed between the area of the sealed worker brood and surplus honey. In the AMC colonies, a positive significant correlation was observed between the area of the sealed brood and the stored pollen and surplus honey.  相似文献   

19.
Summary The effect of workers size frequency distribution on colony development was studied in 12 young colonies ofB. terrestris. By replacing the original workers with workers of determined size, colonies constituting small, large or mixed size nursing workers were created. The nursing workers size frequency distribution did not influence the average size of the newly emerged workers, nor their size frequency distribution. In contrast, the number of emerging workers and number of egg cells constructed by the queen in colonies with large workers were higher than in colonies with small workers. The small number of emerging workers is explained by prolonged duration of larval time in response to sub-optimal feeding in colonies of small workers. The higher number of egg cells constructed by the queens is supposed to be in response to the number of new cocoons available, or to better condition of the brood.  相似文献   

20.
One of the most important factors affecting the development of honey bee colonies is infectious diseases such as American foulbrood (AFB) caused by the spore forming Gram-positive bacterium Paenibacillus larvae. Colony inspections for AFB clinical symptoms are time consuming. Moreover, diseased cells in the early stages of the infection may easily be overlooked. In this study, we investigated whether it is possible to determine the sanitary status of a colony based on analyses of different materials collected from the hive. We analysed 237 bee samples and 67 honey samples originating from 71 colonies situated in 13 apiaries with clinical AFB occurrences. We tested whether a difference in spore load among bees inside the whole hive exists and which sample material related to its location inside the hive was the most appropriate for an early AFB diagnosis based on the culture method. Results indicated that diagnostics based on analysis of honey samples and bees collected at the hive entrance are of limited value as only 86% and 83%, respectively, of samples from AFB-symptomatic colonies were positive. Analysis of bee samples collected from the brood nest, honey chamber, and edge frame allowed the detection of all colonies showing AFB clinical symptoms. Microbiological analysis showed that more than one quarter of samples collected from colonies without AFB clinical symptoms were positive for P. larvae. Based on these results, we recommend investigating colonies by testing bee samples from the brood nest, edge frame or honey chamber for P. larvae spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号