首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insulin-like growth factor-binding proteins IGFBP-1 and IGFBP-2 are low mol wt IGFBPs that are similar in structure. They are not glycosylated and have a homologous amino acid sequence, including the number and position of 18 cysteine residues and a carboxyl-terminal Arg-Gly-Asp sequence that can be recognized by cell adhesion receptors. The present study demonstrates that expression of mRNAs encoding the two BPs differs in some fetal rat tissues and in the livers of adult rats after hypophysectomy, fasting, or streptozotocin-induced diabetes. As determined by Northern blot hybridization using cDNA probes for rat IGFBP-2 or human IGFBP-1, both mRNAs are expressed at high levels in liver of 21-day gestation and 1-day-old rats and at lower levels in 21- and 65-day-old rat liver. Levels of both mRNAs are higher in liver than in other fetal rat tissues. The relative abundance of the two mRNAs in most fetal tissues is similar to that in liver, except that kidney and brain have 8-fold and more than 25-fold higher relative levels of IGFBP-2 mRNA, respectively. IGFBP-2 mRNA is about 10- to 20-fold increased after hypophysectomy or fasting, whereas IGFBP-1 mRNA is relatively unchanged. IGFBP-2 mRNA levels are decreased completely by refeeding fasted rats for 3 days, but only partially decreased by treatment of hypophysectomized rats with GH, cortisone acetate, T4, and testosterone for 4 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Insulin-like growth factor (IGF)-I and IGF-II play a number of important roles in growth and differentiation, and IGF-binding proteins (IGFBPs) modulate IGF biological activity. IGF-I has been shown previously to be essential for normal uterine development. Therefore, we used in situ hybridization assays to characterize the unique tissue- and developmental stage-specific pattern of expression for each IGF and IGFBP gene in the rat uterus during perinatal development (gestational day [GD]-20 to postnatal day [PND]-24). IGF-I and IGFBP-1 mRNAs were expressed in all uterine tissues throughout this period. IGFBP-3 mRNA was not detectable at GD-20 but became detectable beginning at PND-5, and the signal intensity appeared to increase during stromal and muscle development. IGFBP-4 mRNA was abundant throughout perinatal development in the myometrium and in the stroma, particularly near the luminal epithelium. IGFBP-5 mRNA was abundantly expressed in myometrium throughout perinatal development. IGFBP-6 mRNA was detected throughout perinatal development in both the stroma and myometrium in a diffuse expression pattern. IGF-II and IGFBP-2 mRNAs were not detected in perinatal uteri. Our results suggest that coordinated temporal and spatial expression of IGF-I and its binding proteins (IGFBP-1,-3,-4,-5, and -6) could play important roles in perinatal rodent uterine development.  相似文献   

3.
4.
5.
6.
Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-β stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-β is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal controls. These findings indicate that human HSCs, in their activated phenotype, constitutively produce IGFBPs. IGF-I and TGF-β differentially regulate IGFBP-3, IGFBP-4, and IGFBP-5 expression, which, in turn, may modulate the in vitro and in vivo action of IGF-I. J. Cell. Physiol. 174:240–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Insulin-like growth factor-II (IGF-II) is an autocrine modulator of epiphyseal chondrogenesis in the fetus. The cellular availability of IGFs are influenced by the IGF-binding proteins (IGFBPs). In this study, we investigated the control of expression and release of IGFBPs from isolated epiphyseal growth plate chondrocytes from the ovine fetus by hormones and growth factors implicated in the chondrogenic process. Chondrocytes were isolated from the proliferative zone of the fetal ovine proximal tibial growth plate and maintained in monolayer culture at early passage number. Culture media conditioned by chondrocytes under basal conditions released IGFBPs of 24, 34, and 29 kDa, and a less abundant species of 39-43 kDa that were identified immunologically as IGFBP-4, IGFBP-2, IGFBP-5, and IGFBP-3, respectively. Messenger RNAs encoding each species were identified by Northern blot analysis within chondrocytes, as was mRNA encoding IGFBP-6. Exposure to IGF-I or IGF-II (13 or 26 nM) caused an increase in expression and release of IGFBP-3. The release of IGFBP-2 and IGFBP-5 were also potentiated without changes to steady state mRNA, and for IGFBP-5 this was due in part to a release from the cell membrane in the presence of IGF-II. Insulin (16.7 or 167 nM) selectively increased mRNA and the release of IGFBP-3, while cortisol (1 or 5 microM) inhibited both mRNA and release of IGFBP-2 and IGFBP-5. Transforming growth factor-beta1 (TGF-beta1) (0.1 or 0.2 nM) increased the expression and release of IGFBP-3, and caused an increase in mRNAs encoding IGFBP-2 and IGFBP-5. Neither growth hormone (GH), fibroblast growth factor-2, nor thyroxine (T(4)) had any effect on IGFBP expression or release. The results suggest that IGFBP expression and release within the developing growth plate can be modulated by IGF-II and other trophic factors, thus controlling IGF availability and action.  相似文献   

8.
Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNA and accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP. J. Cell. Biochem. 71:351–362, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The insulin-like growth factors, IGF-I and -II, have been shown to play a key role in luteal function in some species. The IGF binding proteins, IGFBP-2 and -3, have been shown to inhibit binding of IGF-I and -II to bovine luteal cells and decrease progesterone production. We have recently shown that equine follicles have the genetic capacity to produce IGFBP-2, and that levels decrease in healthy preovulatory follicles. In the present study expression of mRNAs encoding IGFBP-2, as well as the rate-limiting steroidogenic enzyme, P450scc, were studied in equine corpora lutea to investigate whether IGFBP-2 might be involved in luteolysis. Corpora lutea were collected from mares in mid-luteal phase (day 10), at early regression (day 14), late regression (day 17), and 12 and 36 h after intramuscular administration of the PGF(2alpha) analogue, cloprostenol (0.5 microg/kg). During early natural regression, and 12 h after administration of cloprostenol on day 10, steady state levels of mRNAs encoding P450scc had decreased significantly compared with day 10 of dioestrus (P < 0.001). Levels of mRNA encoding IGFBP-2 increased significantly between mid-diestrus and early (P < 0.01) and late (P < 0.001) regression, and 36 h after cloprostenol administration (P < 0.001). We conclude that the genetic capacity for increased IGFBP-2 production in the early stages of natural luteolysis in the mare may act to sequester IGF-I in the CL, assisting in inhibition of progesterone production. However the delay in increase in mRNA encoding IGFBP-2 after cloprostenol administration, combined with the sharp fall in expression of P450scc mRNA, suggests that the luteolytic action of a pharmacological dose of cloprostenol may not be mediated via IGFBP-2 in the mare.  相似文献   

10.
To investigate the involvement of the insulin-like growth factor (IGF) system in vitamin A (VA)-supported growth, we examined the effects of VA status on IGF binding protein (IGFBP)-2 and -5 gene expression in Japanese quail. VA deficiency caused a reduction in IGFBP-2 mRNA only in lung, without effect in other tissues. However, the expression of IGFBP-5 mRNA was more sensitive to the change of VA status. IGFBP-5 mRNA levels were significantly reduced by VA depletion in a tissue-specific manner, which preceded the decrease in body weight. A single injection of retinoic acid or retinol to VA-deficient quail did not affect the levels of IGFBP-2 mRNA, but it rapidly induced the expression of IGFBP-5 mRNAs in some tissues. These results are the first to show that gene expression of some IGFBPs in vivo are under the control of VA status and suggest a possible involvement of the IGF system in mediating the physiological actions of VA in the growth of Japanese quail.  相似文献   

11.
12.
A beta-lactoglobulin homologue (beta LG/PP14) and insulin-like growth factor-binding protein-1 (IGFBP-1) are two major secretory proteins of the human endometrium. In the present study, we have shown that beta LG/PP14 mRNA is expressed in the endometrium in a cyclic manner, being hardly detectable in midcycle and most abundant during the late secretory phase. IGFBP-1 mRNA is also expressed in endometrium, but in amounts smaller than those encoding beta LG/PP14 and with maximal accumulation earlier in the secretory phase. The expression of these two mRNAs occurs in different cell types of the endometrium, as revealed by in situ hybridization techniques using single-stranded RNA probes. The glandular epithelial cells accumulate beta LG/PP14 mRNA during the late secretory phase of the cycle, whereas only the stromal cells of the late secretory endometrium express IGFBP-1 mRNA. In contrast to the endometrium, the two mRNAs are present at very low abundance in the fallopian tubes where they are expressed in the epithelial cells of the mucosa.  相似文献   

13.
Insulin-like growth factor (IGF)-I and its binding protein IGF binding protein 5 (IGFBP-5) were highly expressed in inflamed and fibrotic intestine in experimental Crohn's disease. IGF-I induced proliferation and increased collagen synthesis by smooth muscle cells and fibroblasts/myofibroblasts in vitro. Here we studied IGF-I and IGFBP-5 in Crohn's disease tissue. Tissue was collected from patients undergoing intestinal resection for Crohn's disease. IGF-I and IGFBP-5 mRNAs were quantitated by RNase protection assay and Northern blot analysis, respectively. In situ hybridization was performed to localize mRNA expression, and Western immunoblot was performed to quantitate protein expression. IGF-I and IGFBP-5 mRNAs were increased in inflamed/fibrotic intestine compared with normal-appearing intestine. IGF-I mRNA was expressed in multiple cell types in the lamina propria and fibroblast-like cells of the submucosa and muscularis externa. IGFBP-5 mRNA was highly expressed in smooth muscle of the muscularis mucosae and muscularis externa as well as fibroblast-like cells throughout the bowel wall. Tissue IGFBP-5 protein correlated with collagen type I (r = 0.82). These findings are consistent with a mechanism whereby IGF-I acts on smooth muscle and fibroblasts/myofibroblasts to increase collagen synthesis and cellular proliferation; its effects may be modulated by locally expressed IGFBP-5.  相似文献   

14.
15.
Growth factors such as platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF-1) stimulate proliferation and migration of vascular smooth muscle cells (SMC). IGF-l bioactivity is modulated by high-affinity binding proteins (IGFBP) which are important regulators of these processes. Procine vascular SMC synthesize IGFBP-2 and IGFBP-4 in vitro. In the present study, levels of IGFBP-2 in conditioned media (CM) were increased approximately 1.6 to 2.2-fold when cells were exposed to PDGF (20 ng.ml) or insulin (5 μg/ml) for 24 hr following a 24 hr incubation in serum-free media, or following a 72 hr exposure to either growth factor. Similar increases in IGFBP-2 mRNA levels were observed. Exposure of cells to PDGF for 24 hr without prior serum deprivation resulted in smaller (47 ± 11%) increases in IGFBP-2 protein levels but failed to alter mRNA levels. IGF-1, FGF-b? and EGF failed to increase IGFBP-2 using either experimental paradigm. In contrast, IGFBP-2 protein levels were consistently decreased (75 ± 14%) after 72 hr of exposure to IGF-II without corresponding decreases in IGFBP-2 mRNA levels. Immunoprecipitation of [35S] methionine-labeled IGFBP-2 indicated that this decrease was not due to a decrease in synthesis of IGFBP-2. Immunoblot analysis of CM from cells treated with IGF-II indicated that the decrease in intact protein corresponded with an increase in two non-IGF binding IGFBP-2 fragments of 22 and 14 kD. Increased abundance of these fragements was also observed following IGF-I exposure, although corresponding decreases in intact IGFBP-2 were not usually observed. The relative abundance of these fragments did not appear to be affected by treatment with PDGF or insulin. In contrast to IGFBP-2, regulation of the levels of IGFBP-4 in CM did not appear to be altered by serum deprivation. Insulin consistently increased IGFBP-4 mRNA and protein levels under all situations. PDGF tended to increase IGFBP-4 protein levels, although this effect was less consistent and not as great as the increase observe with insulin. Treatment with IGF-I or -ll consistently decreased IGFBP-4 levels in CM but tended to increase their mRNA levels under all situations. These data indicate that insulin, PDGF, and the IGFs regulate both IGFBP-2 and IGFBP-4. While PDGF and insulin stimulate IGFBP-2 and 4 synthesis, the IGFs appear to activate protease(s) which regulate IGFBP-2 and -4 levels post-translationally. The regulation of IGFBP-2 levels by each of these mechanisms appears to be amplified by serum deprivation, but this is not observed with IGFBP-4. © 1995 Wiley-Liss, Inc.  相似文献   

16.
17.
Regulation of the production of insulin-like growth factor (IGF)-I, IGF-II, IGF binding proteins (IGFBPs), and their related proteins by various hormones was investigated in primary cultures of rat liver parenchymal and nonparenchymal cells.

Freshly isolated parenchymal cells contained mRNAs of IGF-I, IGF-II, IGFBP-1, IGFBP-4, growth hormone (GH) receptor, and the acid-labile subunit (ALS), which forms a ternary complex with IGF-I and IGFBP-3; however, parenchymal cells did not express the IGFBP-3 gene. In contrast, nonparenchymal cells contained IGFBP-3 mRNA exclusively, as we reported previously [Takenaka et al. Agric. Biol. Chem., 55, 1191–1193 (1991)]. Cultured rat parenchymal cells produced IGF-I, IGFBP-1, and IGFBP-4 prominently. In these cells, secretion of IGF-I and the content of IGF-I mRNA was greatly increased in the presence of GH in the medium. Insulin also increased the production of IGF-I. Secretion of IGFBP-l into the medium was enhanced by treatment with glucagon, dibutyrylcyclic AMP (Bu2cAMP), and dexamethasone (Dex) and these enhancements with glucagon and Dex reflected the increase in its mRNA content. Insulin depressed the secretion of IGFBP-l. The content of IGFBP-4 in the parenchymal cells was increased by insulin, Bu2cAMP, and triiodothyronine (T3), thereby enhancing the production of IGFBP-4 and secretion into the medium. Cultured liver nonparenchymal cells of rats produced IGFBP-1, IGFBP-3, and IGFBP-4. Secretion of IGFBP-l was increased by Bu2cAMP in the medium, that of IGFBP-3 by IGF-I, and that of IGFBP-4 by both IGF-I and Bu2cAMP. Regulation of the production of IGFBP-3 by IGF-I was demonstrated in these investigations.

These results suggest that GH increases production of IGF-I in the parenchymal cells and this IGF-I, in turn, increases the production of IGFBP-3 in nonparenchymal cells. As we found GH also increases ALS production in parenchymal cells, by these mechanisms, GH increases the formation of the ternary complex of IGF-I, IGFBP-3, and ALS. This study clearly demonstrates the interrelationship between parenchymal and nonparenchymal cells in the production of IGF-I and IGFBPs in the liver.  相似文献   

18.
TNF alpha and IL-1 alpha are thought to contribute to impaired anabolism in a variety of clinical states, including sepsis, cancer cachexia and the AIDS wasting syndrome. We asked whether cytokines exert direct effects on hepatic production of IGFBP-1, an important modulator of IGF bioavailability. C57BL/6 mice were treated with 100 micrograms/kg of recombinant IL-1 alpha or TNF alpha by intraperitoneal injection. Western ligand blotting and immunoprecipitation with specific antisera revealed that serum levels of IGFBP-1 (but not IGFBP-2, -3, -4, -5 or -6) are increased approximately 4 fold 2 h after treatment and then decline. Northern blotting confirms that hepatic IGFBP-1 mRNA abundance also is increased acutely in both IL-1 alpha- and TNF alpha-treated animals. Similar results obtained in adrenalectomized mice indicate that adrenal activation is not required for this effect. Cell culture studies show that cytokines exert direct effects on the production of IGFBP-1 by HepG2 hepatoma cells, increasing IGFBP-1 levels in conditioned medium and the abundance of IGFBP-1 mRNA approximately 3-fold. In contrast, transient transfection studies with IGFBP-1 promoter/luciferase reporter gene constructs show that IGFBP-1 promoter activity is reduced after 18 hr cytokine treatment. We conclude that IL-1 alpha and TNF alpha increase circulating levels of IGFBP-1, reflecting direct effects on hepatic IGFBP-1 mRNA abundance. Stimulation of hepatic IGFBP-1 production may contribute to alterations in IGF bioactivity and impaired anabolism in clinical conditions where cytokine production is high. Additional studies are required to identify specific mechanisms mediating effects of cytokines on hepatic production of IGFBP-1.  相似文献   

19.
Abstract

Recent studies indicate increased insulin-like growth factor I (IGF-I) expression and altered expression of IGF binding proteins (IGFBP) in the bowel during experimental colitis. This study analyzes the cellular sites of altered IGF-I and IGFBP-expression in large bowel of rats with experimental colitis. Colitis was induced by colonic instillation of 2, 4, 6- trinitrobenzenesulfonic (TNB) acid in ethanol. Animals were sacrificed at 7 days after induction of colitis. Cryostat sections of colon from TNB-treated and control rats were hybridized with 35S-labeled antisense probes for IGF-I, IGFBP-3, IGFBP-4 and IGFBP-5. IGF-I mRNA was up-regulated in lamina propria cells, submucosa and smooth muscle of inflamed colon. IGFBP-3 mRNA was localized to lamina propria and was down-regulated in inflamed colon. IGFBP-4 and IGFBP-5 mRNAs were both up-regulated in inflamed colon. IGFBP-4 mRNA was increased in lamina propria, submucosa and smooth muscle, whereas IGFBP-5 mRNA was increased in smooth muscle. Increased IGF-I expression in mesenchymal layers of colon during experimental colitis supports the hypothesis that IGF-I contributes to hyperplasia and fibrosis in response to inflammation. Altered expression of IGFBP-3, IGFBP-4 and IGFBP-5 in specific bowel layers during colitis suggests that they play a role in modulating IGF-I action.  相似文献   

20.
Insulin-like growth factor binding proteins (IGFBPs) affect the biological activity of IGF-I in several cell types, including cultured muscle cells. Additionally, at least one of the IGFBPs, IGFBP-3, has been shown to have IGF-independent effects on cell proliferation. Numerous studies have shown that immortalized muscle cell lines produce various IGFBPs, but to date no muscle cell line has been reported to produce IGFBP-3 protein or mRNA. Unlike muscle cell lines, primary cultures of porcine embryonic myogenic cells express IGFBP-3 mRNA and secrete a protein that is immunologically identifiable as IGFBP-3. Additionally, steady-state IGFBP-3 levels change significantly during differentiation. Here we report that differentiation of porcine myogenic cells in an IGFBP-3-free medium is accompanied by reduced steady-state IGFBP-3 mRNA levels. Steady-state levels of IGFBP-3 mRNA decreased approximately sevenfold (P < .05) during differentiation and then increased to predifferentiation levels once differentiation was complete. Addition of TGF-beta1 (0.5 ng/ml) to porcine myogenic cultures suppressed fusion and resulted in a sevenfold increase in steady-state IGFBP-3 mRNA and a 1.8-fold increase in IGFBP-3 protein levels as compared to untreated control cultures (P < .05). Results suggest that alterations in IGFBP-3 mRNA and protein may play a role in differentiation of porcine embryonic muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号