首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current perception of evolutionary relationships and the natural diversity of ammonia-oxidizing bacteria (AOB) is mainly based on comparative sequence analyses of their genes encoding the 16S rRNA and the active site polypeptide of the ammonia monooxygenase (AmoA). However, only partial 16S rRNA sequences are available for many AOB species and most AOB have not yet been analyzed on the amoA level. In this study, the 16S rDNA sequence data of 10 Nitrosomonas species and Nitrosococcus mobilis were completed. Furthermore, previously unavailable 16S rRNA sequences were determined for three Nitrosomonas sp. isolates and for the gamma-subclass proteobacterium Nitrosococcus halophilus. These data were used to revaluate the specificities of published oligonucleotide primers and probes for AOB. In addition, partial amoA sequences of 17 AOB, including the above-mentioned 15 AOB, were obtained. Comparative phylogenetic analyses suggested similar but not identical evolutionary relationships of AOB by using 16S rRNA and AmoA as marker molecules, respectively. The presented 16S rRNA and amoA and AmoA sequence data from all recognized AOB species significantly extend the currently used molecular classification schemes for AOB and now provide a more robust phylogenetic framework for molecular diversity inventories of AOB. For 16S rRNA-independent evaluation of AOB species-level diversity in environmental samples, amoA and AmoA sequence similarity threshold values were determined which can be used to tentatively identify novel species based on cloned amoA sequences. Subsequently, 122 amoA sequences were obtained from 11 nitrifying wastewater treatment plants. Phylogenetic analyses of the molecular isolates showed that in all but two plants only nitrosomonads could be detected. Although several of the obtained amoA sequences were only relatively distantly related to known AOB, none of these sequences unequivocally suggested the existence of previously unrecognized species in the wastewater treatment environments examined.  相似文献   

2.
Denaturing gradient gel electrophoresis (DGGE) of PCR amplicons of the ammonia monooxygenase gene (amoA) was developed and employed to investigate the diversity of ammonia-oxidizing bacteria (AOB) in four different habitats. The results were compared to DGGE of PCR-amplified partial 16S rDNA sequences made with primers specific for ammonia-oxidizing bacteria. Potential problems, such as primer degeneracy and multiple gene copies of the amoA gene, were investigated to evaluate and minimize their possible impact on the outcome of a DGGE analysis. amoA and 16S rDNA amplicons were cloned, and a number of clones screened by DGGE to determine the abundance of different motility types in the clone library. The abundance of clones was compared to the relative intensity of bands emerging in the band pattern produced by direct amplification of the genes from the environmental sample. Selected clones were sequenced to evaluate the specificity of the respective primers. The 16S rDNA primer pair, reported to be specific for ammonia-oxidizing bacteria (AOB), generated several sequences that were not related to the known Nitrosospira-Nitrosomonas group and, thus, not likely to be ammonia oxidizers. However, no false positives were found among the sequences retrieved with the modified amoA primers. Some phylogenetic information could be deduced from the position of amoA bands in DGGE gels. The Nitrosomonas-like sequences were found within a denaturant range from 30% to 46%, whereas the Nitrosospira-like sequences migrated to 50% to 60% denaturant. The majority of retrieved sequences from all four habitats with high ammonia loads were Nitrosomonas-like and only few Nitrosospira-like sequences were detected.  相似文献   

3.
好氧氨氧化菌的种群生态学研究进展   总被引:21,自引:1,他引:20  
好氧氨氧化菌是一类能够在好氧条件下将NH4^+转化为NO2^-的化能无机自养型细菌,其活动将直接或间接影响土壤养分循环、水体富营养化、温室气体(N2O)和生态系统的功能。现代分子生物学技术的发展促进了人们对好氧氨氧化菌种群生态学的研究。介绍了近年来基于16SrRNA和氨单加氧酶amoA基因序列分析的好氧氨氧化菌的系统发育研究,比较了两种基因序列分析在好氧氨氧化菌遗传多样性研究中存在的差异;概述了环境条件诸如铵浓度、酸度、氧的可利用性、温度、盐度等对好氧氨氧化菌种类、数量及其种群生态分布的影响;阐述了好氧氨氧化菌对铵、氧饥饿的响应特征及其在酸性环境中的生存机制;并对今后好氧氨氧化菌的应用生态学研究及其主要方向进行了展望。  相似文献   

4.
We investigated the phylogenetic diversity of ammonia-oxidizing bacteria (AOB) in Yellow Sea continental shelf sediment by the cloning and sequencing of PCR-amplified amoA and 16S rRNA genes. Phylogenetic analysis of the amoA-related clones revealed that the diversity of AOB was extremely low at the study site. The majority (92.7%) of amoA clones obtained belonged to a single cluster, environmental amoA cluster-3, the taxonomic position of which was previously unknown. Phylogenetic analysis on AOB-specific 16S rRNA gene sequences also demonstrated a very low diversity. All of the cloned 16S rRNA gene sequences comprised a single phylotype that belonged to the members of uncultured Nitrosospira cluster-1, suggesting that AOB belonging to the uncultured Nitrosospira cluster- 1 could carry amoA sequences of environmental amoA cluster-3.  相似文献   

5.
Nitrification and anammox with urea as the energy source   总被引:6,自引:0,他引:6  
Urea is present in many ecosystems and can be used as an energy source by chemolithotrophic aerobic ammonia oxidizing bacteria (AOB). Thus the utilization of urea in comparison to ammonia, by AOB as well as anaerobic ammonia oxidizing (Anammox) bacteria was investigated, using enrichments cultures, inoculated with activated sludge, and molecular ecological methods. In batch enrichment cultures grown with ammonia a population established in 2 weeks, which was dominated by halophilic and halotolerant AOB as determined by fluorescence in situ hybridization (FISH) experiments, with the 16S rRNA targeting oligonucleotide probe NEU. In other batch enrichment cultures using urea, the AOB population was assessed by PCR amplification, cloning and phylogenetic analysis of amoA and ribosomal 16S rRNA genes. While only one of the 48 16S rRNA gene clones could be identified as AOB (Nitrosomonas oligotropha), the amoA approach revealed two more AOB, Nitrosomonas europaea and Nitrosomonas nitrosa to be present in the enrichment. FISH analysis of the enrichment with probe NEU and newly designed probes for a specific detection of N. oligotropha and N. nitrosa related organisms, respectively, showed that N. oligotropha-like AOB formed about 50% of the total bacterial population. Also N. nitrosa (about 15% of the total population) and N. europaea (about 5% of the total population) were relatively abundant. Additionally, continuous enrichments were performed under oxygen limitation. When ammonia was the energy source, the community in this reactor consisted of Anammox bacteria and AOB hybridizing with probe NEU. As the substrate was changed to urea, AOB related to N. oligotropha became the dominant AOB in this oxygen limited consortium. This resulted in a direct conversion of urea to dinitrogen gas, without the addition of organic carbon.  相似文献   

6.
In wastewater treatment plants based on the rhizosphere zone (rhizoremediation technology), ammonia-oxidizing bacteria (AOB) play an important role in the removal of fixed nitrogen. However, the diversity of these bacteria in rhizoremediation wastewater treatment plants is largely unknown. We employed direct PCR amplification and cloning of 16S rRNA genes to determine the phylogenetic affiliation of AOB occurring in root and soil samples of a wastewater treatment plant (Merzdorf plant, Brandenburg, Germany). 16S rDNA clone libraries were screened by hybridization using an oligonucleotide probe specific for AOB of the beta subclass of proteobacteria. Comparative sequence analysis of all hybridization-positive clones revealed that the majority of rDNA sequences was affiliated to members of the genus Nitrosospira and formed a novel subcluster (SM cluster), whereas only three sequences were most closely related to Nitrosomonas species. Affiliation of the novel Nitrosospira-like sequences with those of isolates from soil and rhizosphere suggests that phylogenetic clusters reflect physiological differences between members of this genus.  相似文献   

7.
Communities of ammonia-oxidizing bacteria (AOB) were characterized in two acidic soil sites experimentally subjected to varying levels of nitrogen and sulphur deposition. The sites were an acidic spruce forest soil in Deepsyke, Southern Scotland, with low background deposition, and a nitrogen-saturated upland grass heath in Pwllpeiran, North Wales. Betaproteobacterial ammonia-oxidizer 16S rRNA and ammonia monooxygenase (amoA) genes were analysed by cloning, sequencing and denaturing gradient gel electrophoresis (DGGE). DGGE profiles of amoA and 16S rRNA gene fragments from Deepsyke soil in 2002 indicated no effect of nitrogen deposition on AOB communities, which contained both Nitrosomonas europaea and Nitrosospira. In 2003, only Nitrosospira could be detected, and no amoA sequences could be retrieved. These results indicate a decrease in the relative abundance of AOB from the year 2002 to 2003 in Deepsyke soil, which may be the result of the exceptionally low rainfall in spring 2003. Nitrosospira-related sequences from Deepsyke soil grouped in all clusters, including cluster 1, which typically contains only sequences from marine environments. In Pwllpeiran soil, 16S rRNA gene libraries were dominated by nonammonia oxidizers and no amoA sequences were detectable. This indicates that autotrophic AOB play only a minor role in these soils even at high nitrogen deposition.  相似文献   

8.
Use of amoB as a new molecular marker for ammonia-oxidizing bacteria   总被引:3,自引:0,他引:3  
Specific molecular determination and classification of ammonia-oxidizing bacteria have relied on the use of conventional markers such as 16S rDNA. However, this gene does not satisfactorily provide a wide vision of all phylogenetic lineages. Despite the initial expectations, the use of functional genes as for example amoA has only been useful to corroborate the established taxonomy. Ammonia-oxidizing bacteria constitute a physiological group that crosses over principal phylogenetic radiations. Therefore, it is necessary to look for novel functional markers, which are needed for both diversity and taxonomic studies. In this work, the available amoB sequences have been used to design a new degenerate set of primers flanking a ca. 500-bp region. Partial amoB gene sequences of up to 16 AOB strains (5 Nitrosomonas, 10 Nitrosospira, and 1 Nitrosococcus) belonging to both the beta- and the gamma-Proteobacteria have been obtained. Comparison of both DNA and deduced amino acid sequences results in three subgroups, two of them of the beta-Proteobacteria and a third one of the gamma-Proteobacteria displaying 75% and 35% homology in their deduced amino acid sequences, respectively. This gene has proven to be a suitable molecular marker to study AOB, as well as providing a new insight into the classification of this group.  相似文献   

9.
Comparisons of the activities and diversities of ammonia-oxidizing bacteria (AOB) in the root environment of different cultivars of rice (Oryza sativa L.) indicated marked differences despite identical environmental conditions during growth. Gross nitrification rates obtained by the 15N dilution technique were significantly higher in a modern variety, IR63087-1-17, than in two traditional varieties. Phylogenetic analysis based on the ammonium monooxygenase gene (amoA) identified strains related to Nitrosospira multiformis and Nitrosomonas europaea as the predominant AOB in our experimental rice system. A method was developed to determine the abundance of AOB on root biofilm samples using fluorescently tagged oligonucleotide probes targeting 16S rRNA. The levels of abundance detected suggested an enrichment of AOB on rice roots. We identified 40 to 69% of AOB on roots of IR63087-1-17 as Nitrosomonas spp., while this subpopulation constituted 7 to 23% of AOB on roots of the other cultivars. These results were generally supported by denaturing gradient gel electrophoresis of the amoA gene and analysis of libraries of cloned amoA. In hydroponic culture, oxygen concentration profiles around secondary roots differed significantly among the tested rice varieties, of which IR63087-1-17 showed maximum leakage of oxygen. The results suggest that varietal differences in the composition and activity of root-associated AOB populations may result from microscale differences in O2 availability.  相似文献   

10.
Temporal and spatial dynamics of ammonia-oxidizing bacteria (AOB) were examined using genes encoding 16S rRNA and ammonia monooxygenase subunit A (AmoA) in Monterey Bay, Calif. Samples were collected from three depths in the water column on four dates at one mid-bay station. Diversity estimators for the two genes showed a strong positive correlation, indicating that overlapping bacterial populations had been sampled by both sets of clone libraries. Some samples that were separated by only 15 m in depth had less genetic similarity than samples that were collected from the same depth months apart. Clone libraries from the Monterey Bay AOB community were dominated by Nitrosospira-like sequences and clearly differentiated from the adjacent AOB community in Elkhorn Slough. Many Monterey Bay clones clustered with previously identified 16S rRNA and amoA groups composed entirely of marine sequences, supporting the hypothesis that these groups are specific to the marine environment and are dominant marine AOB. In addition, novel, phylogenetically distinct groups of AOB sequences were identified and compared to sequences in the database. Only one cluster of gammaproteobacterial AOB was detected using 16S rRNA genes. Although significant genetic variation was detected in AOB populations from both vertical and temporal samples, no significant correlation was detected between diversity and environmental variables or the rate of nitrification.  相似文献   

11.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.  相似文献   

12.
Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.  相似文献   

13.
In this study, we investigated the size and structure of autotrophic ammonia oxidizer (AAO) communities in the groundwater of a contamination plume originating from a mill-tailings disposal site. The site has high levels of dissolved N from anthropogenic sources, and exhibited wide variations in the concentrations of NO3- and NH3 + NH4+. Community structures were examined by PCR-DGGE targeting 16S rDNA with band excision and sequence analysis, and by analysis of amoA fragment clone libraries. AAO population sizes were estimated by competitive PCR targeting the gene amoA, and correlated significantly with nitrate concentration. Most samples revealed novel diversity in AAO 16S rDNA and amoA gene sequences. Both 16S rDNA and amoA analyses suggested that all samples were dominated by Nitrosomonas sp., Nitrosospira sp. being detected in only 3 of 15 samples. This study indicated numerical dominance of Nitrosomonas over Nitrosospira in groundwater, and suggests that groundwater ammonia oxidizers are more similar to those dominating freshwater sediments than bulk soil.  相似文献   

14.
The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creating an ammonia gradient along the flowpath. This RBC system provides a valuable experimental system for testing the hypothesis that ammonia concentration determines the relative abundance of AOA and AOB. The results demonstrate that AOA increased as ammonium decreased across the RBC flowpath, as indicated by qPCR for thaumarchaeal amoA and 16S rRNA genes, and core lipid (CL) and intact polar lipid (IPL) crenarchaeol abundances. Overall, there was a negative logarithmic relationship (R(2) =?0.51) between ammonium concentration and the relative abundance of AOA amoA genes. A single AOA population was detected in the RBC biofilms; this phylotype shared low amoA and 16S rRNA gene homology with existing AOA cultures and enrichments. These results provide evidence that ammonia availability influences the relative abundances of AOA and AOB, and that AOA are abundant in some municipal wastewater treatment systems.  相似文献   

15.
Finding a unique molecular marker capable of quickly providing rigorous and useful phylogenetic information would facilitate assessing the diversity of ammonia-oxidizing bacteria in environmental samples. Since only one of several available markers can be used at a time in these kinds of studies, the 16S rDNA, amoA and amoB genes were evaluated individually and then compared in order to identify the one that best fits the information provided by the composite dataset. Distance-based neighbor-joining and maximum parsimony trees generated using the sequences of the three mentioned genes were analyzed with respect to the combined polygenic trees. Maximum parsimony trees were found to be more accurate than distance-based ones, and the polygenic topology was shown to best fit the information contained in the sequences. However, the taxonomic and phylogenetic information provided by the three markers separately was also valid. Therefore, either of the functional markers (amoA or amoB) can be used to trace ammonia oxidizers in environmental studies in which only one gene can be targeted.  相似文献   

16.
陈哲  陈春兰  秦红灵  王霞  吴敏娜  魏文学 《生态学报》2009,29(11):6142-6147
以中国科学院桃源农业生态试验站长期定位施肥试验为平台,采用聚合酶链式反应(polymerase chain reaction,PCR)和DNA序列测定技术分析研究了3种长期施肥制度(对照不施肥-CK,单施氮肥-N,氮磷钾肥-NPK)对土壤细菌群落以及硝化、反硝化微生物种群的影响.通过系统分析细菌16S rDNA、细菌的硝化基因氨单加氧酶(ammonia monooxygenase,amoA)和反硝化基因氧化亚氮还原酶(nitrous oxide reductase,nosZ)等基因文库发现,长期单施氮肥导致细菌16S rDNA和amoA的多样性明显低于CK和NPK处理,而nosZ的多样性与之相反,即单施氮肥处理明显高于CK和NPK处理.LUBSHUFF软件统计分析显示:16S rDNA和amoA基因文库在CK与N,CK与NPK,NPK与N处理间均存在显著性差异.而对于nosZ基因文库,N和NPK与CK处理相比呈现出了显著性差异,N与NPK之间的差异没有达到显著水平.上述结果表明长期施用化肥对水稻土细菌的群落结构及硝化和反硝化细菌组成产生了明显的影响,但这种影响因基因类型而异.  相似文献   

17.
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.  相似文献   

18.
Ammonia‐oxidizing archaea: important players in paddy rhizosphere soil?   总被引:11,自引:0,他引:11  
The diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in paddy soil with different nitrogen (N) fertilizer amendments for 5 weeks were investigated using quantitative real-time polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE) jand clone library analysis based on the ammonia monooxygenase α-subunit ( amoA ) gene. Ammonia-oxidizing archaea predominated among ammonia-oxidizing prokaryotes in the paddy soil, and the AOA:AOB DNA-targeted amoA gene ratios ranged from 1.2 to 69.3. Ammonia-oxidizing archaea were more abundant in the rhizosphere than in bulk soil. Rice cultivation led to greater abundance of AOA than AOB amoA gene copies and to differences in AOA and AOB community composition. These results show that AOA is dominant in the rhizosphere paddy soil in this study, and we assume that AOA were influenced more by exudation from rice root (e.g. oxygen, carbon dioxide) than AOB.  相似文献   

19.
Within the upper 400 m at western, central and eastern stations in the world's largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alpha-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 microM including layers where previously anammox bacteria were described. Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared with the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 microM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared with the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.  相似文献   

20.
The model marine crenarchaeote ' Cenarchaeum symbiosum ' is until now the only ammonia-oxidizing archaeon known from a marine sponge. Here, phylogenetic analyses based on the 16S rRNA and ammonia monooxygenase subunit A ( amoA ) genes revealed the presence of putative ammonia-oxidizing archaea (AOA) in a diverse range of sponges from the western Pacific, Caribbean and Mediterranean. amoA diversity was limited even between different oceans, with many of the obtained sequences (75.9%; n total = 83) forming a monophyletic, apparently sponge- (and coral-) specific lineage, analogous to those previously inferred from comparative 16S rRNA gene studies of sponge-associated microbes. The presence of AOA in sponge larvae, as detected by 16S rRNA and amoA PCR assays as well as by fluorescence in situ hybridization, suggests they are vertically transmitted and thus might be of importance for ammonia detoxification within the sponge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号