首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
He B  Xi F  Zhang X  Zhang J  Guo W 《The EMBO journal》2007,26(18):4053-4065
The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.  相似文献   

2.
3.
The exocyst is a large complex that is required for tethering vesicles at the final stages of the exocytic pathway in all eukaryotes. Here we present the structures of the Exo70p subunit of this complex and of the C-terminal domains of Exo84p, at 2.0-A and 2.85-A resolution, respectively. Exo70p forms a 160-A-long rod with a novel fold composed of contiguous alpha-helical bundles. The Exo84p C terminus also forms a long rod (80 A), which unexpectedly has the same fold as the Exo70p N terminus. Our structural results and our experimental observations concerning the interaction between Exo70p and other exocyst subunits or Rho3p GTPase are consistent with an architecture wherein exocyst subunits are composed of mostly helical modules strung together into long rods.  相似文献   

4.
5.
In contrast to a single copy of Exo70 in yeast and mammals, the Arabidopsis genome contains 23 paralogues of Exo70 (AtExo70). Using AtExo70E2 and its GFP fusion as probes, we recently identified a novel double-membrane organelle termed exocyst-positive organelle (EXPO) that mediates an unconventional protein secretion in plant cells. Here we further demonstrate that AtExo70E2 is essential for exocyst subunit recruitment and for EXPO formation in both plants and animals. By performing transient expression in Arabidopsis protoplasts, we established that a number of exocyst subunits (especially the members of the Sec family) are unable to be recruited to EXPO in the absence of AtExo70E2. The paralogue AtExo70A1 is unable to substitute for AtExo70E2 in this regard. Fluorescence resonance energy transfer assay and bimolecular fluorescence complementation analyses confirm the interaction between AtExo70E2 and Sec6 and Sec10. AtExo70E2, but not its yeast counterpart, is also capable of inducing EXPO formation in an animal cell line (HEK293A cells). Electron microscopy confirms the presence of double-membraned, EXPO-like structures in HEK293A cells expressing AtExo70E2. Inversely, neither human nor yeast Exo70 homologues cause the formation of EXPO in Arabidopsis protoplasts. These results point to a specific and crucial role for AtExo70E2 in EXPO formation.  相似文献   

6.
The exocyst is an evolutionarily conserved multiprotein complex required for the targeting and docking of post-Golgi vesicles to the plasma membrane. Through its interactions with a variety of proteins, including small GTPases, the exocyst is thought to integrate signals from the cell and signal that vesicles arriving at the plasma membrane are ready for fusion. Here we describe the three-dimensional crystal structure of one of the components of the exocyst, Exo70p, from Saccharomyces cerevisiae at 3.5A resolution. Exo70p binds the small GTPase Rho3p in a GTP-dependent manner with an equilibrium dissociation constant of approximately 70 microM. Exo70p is an extended rod approximately 155 angstroms in length composed principally of alpha helices, and is a novel fold. The structure provides a first view of the Exo70 protein family and provides a framework to study the molecular function of this exocyst component.  相似文献   

7.
8.
The exocyst is a eukaryotic tethering complex necessary for the fusion of exocytic vesicles with the plasma membrane. Its function in vivo is tightly regulated by interactions with multiple small GTPases. Exo70, one of the eight subunits of the exocyst, is important for the localization of the exocyst to the plasma membrane. It interacts with TC10 and Rho3 GTPases in mammals and yeast, respectively, and has been shown recently to bind to the actin-polymerization complex Arp2/3. Here, we present the crystal structure of Mus musculus Exo70 at 2.25 A resolution. Exo70 is composed of alpha-helices in a series of right-handed helix-turn-helix motifs organized into a long rod of length 170 A and width 35 A. Although the alpha-helical organization of this molecule is similar to that in Saccharomyces cerevisiae Exo70, major structural differences are observed on the surface of the molecule, at the domain boundaries, and in various loop structures. In particular, the C-terminal domain of M. musculus Exo70 adopts a new orientation relative to the N-terminal half not seen in S. cerevisiae Exo70 structures. Given the low level of sequence conservation within Exo70, this structure provides new insights into our understanding of many species-specific functions of the exocyst.  相似文献   

9.
Components of the vesicle trafficking machinery are central to the immune response in plants. The role of vesicle trafficking during pre-invasive penetration resistance has been well documented. However, emerging evidence also implicates vesicle trafficking in early immune signaling. Here we report that Exo70B1, a subunit of the exocyst complex which mediates early tethering during exocytosis is involved in resistance. We show that exo70B1 mutants display pathogen-specific immuno-compromised phenotypes. We also show that exo70B1 mutants display lesion-mimic cell death, which in combination with the reduced responsiveness to pathogen-associated molecular patterns (PAMPs) results in complex immunity-related phenotypes.  相似文献   

10.
11.
Ren J  Guo W 《Developmental cell》2012,22(5):967-978
The exocyst is a multiprotein complex essential for exocytosis and plasma membrane remodeling. The assembly of the exocyst complex mediates the tethering of post-Golgi secretory vesicles to the plasma membrane prior to fusion. Elucidating the mechanisms regulating exocyst assembly is important for the understanding of exocytosis. Here we show that the exocyst component Exo70 is a direct substrate of the extracellular signal-regulated kinases 1/2 (ERK1/2). ERK1/2 phosphorylation enhances the binding of Exo70 to other exocyst components and promotes the assembly of the exocyst complex in response to epidermal growth factor (EGF) signaling. We further demonstrate that ERK1/2 regulates exocytosis, because blocking ERK1/2 signaling by a chemical inhibitor or the expression of an Exo70 mutant defective in ERK1/2 phosphorylation inhibited exocytosis. In tumor cells, blocking Exo70 phosphorylation inhibits matrix metalloproteinase secretion and invadopodia formation. ERK1/2 phosphorylation of Exo70 may thus coordinate exocytosis with other cellular events in response to growth factor signaling.  相似文献   

12.
Zuo X  Zhang J  Zhang Y  Hsu SC  Zhou D  Guo W 《Nature cell biology》2006,8(12):1383-1388
The exocyst is a multiprotein complex essential for tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. Here, we report that the exocyst component Exo70 interacts with the Arp2/3 complex, a key regulator of actin polymerization. We further show that the exocyst-Arp2/3 interaction is regulated by epidermal growth factor (EGF) signalling. Inhibition of Exo70 by RNA interference (RNAi) or antibody microinjection blocks the formation of actin-based membrane protrusions and affects various aspects of cell motility. We propose that Exo70, in addition to functioning in exocytosis, also regulates actin at the leading edges of migrating cells, therefore coordinating cytoskeleton and membrane traffic during cell migration.  相似文献   

13.
The localization of the GTP-binding protein TC10 to lipid raft microdomains has been suggested to play a role in the stimulation of GLUT4 translocation. The exocyst has now been identified as a downstream target for TC10, directing GLUT4-containing vesicles to the site of fusion.  相似文献   

14.
AMP-activated protein kinase (AMPK) is a critical regulator of glucose metabolism. To elucidate the biochemical mechanisms by which AMPK regulates glucose and fat metabolism, we conducted a yeast two-hybrid screen to identify its interacting partners. A yeast two-hybrid system was used to screen a mouse embryo cDNA library for proteins able to bind mouse AMPKα1. We also demonstrated an endogenous interaction between AMPKα1 and its interacting partner by co-immunoprecipitation of the endogenous proteins using specific antibodies in HepG2 cells, and in rat kidney, liver, skeletal muscle, and fat tissue. We show that secreted protein acidic and rich in cysteine (SPARC) is an AMPK-interacting protein, and the two proteins enhance each other. AMPK activation increases SPARC expression, and knockdown of AMPK to inhibit endogenous AMPK expression reduces SPARC protein levels. On the other hand, SPARC siRNA reduces AICAR-stimulated AMPK phosphorylation. SPARC affects AMPK-mediated glucose metabolism through regulation of Glut4 expression in L6 myocytes. Our findings suggest that SPARC may be involved in regulating glucose metabolism via AMPK activation. These results provide a starting point for efforts to clarify the relationship between AMPK and SPARC, and deepen our understanding of their roles in fat and glucose metabolism.  相似文献   

15.
Jiu Y  Jin C  Liu Y  Holmberg CI  Jäntti J 《PloS one》2012,7(2):e32077
The exocyst complex is required for cell polarity regulation and the targeting and tethering of transport vesicles to the plasma membrane. The complex is structurally well conserved, however, the functions of individual subunits and their regulation is poorly understood. Here we characterize the mutant phenotypes for the exocyst complex genes exoc-7 (exo70) and exoc-8 (exo84) in Caenorhabditis elegans. The mutants display pleiotropic behavior defects that resemble those observed in cilia mutants (slow growth, uncoordinated movement, defects in chemo-, mechano- and thermosensation). However, no obvious morphological defects in cilia were observed. A targeted RNAi screen for small GTPases identified eleven genes with enhanced phenotypes when combined with exoc-7, exoc-8 single and exoc-7;exoc-8 double mutants. The screen verified previously identified functional links between the exocyst complex and small GTPases and, in addition, identified several novel potential regulators of exocyst function. The exoc-8 and exoc-7;exoc-8 mutations caused a significant size increase in the rab-10 RNAi-induced endocytic vacuoles in the intestinal epithelial cells. In addition, exoc-8 and exoc-7;exoc-8 mutations resulted in up-regulation of RAB-10 expression and affected the accumulation of endocytic marker proteins in these cells in response to rab-10 RNAi. The findings identify novel, potential regulators for exocyst function and show that exoc-7 and exoc-8 are functionally linked to rab-10 in endosomal trafficking in intestinal epithelial cells in C. elegans.  相似文献   

16.
The trafficking of aquaporin-2 (AQP2) involves multiple complex pathways, including regulated, cAMP-, and cGMP-mediated pathways, as well as a constitutive recycling pathway. Although several accessory proteins have been indirectly implicated in AQP2 recycling, the direct protein-protein interactions that regulate this process remain largely unknown. Using yeast two-hybrid screening of a human kidney cDNA library, we have identified the 70-kDa heat shock proteins as AQP2-interacting proteins. Interaction was confirmed by mass spectrometry of proteins pulled down from rat kidney papilla extract using a GST-AQP2 C-terminal fusion protein (GST-A2C) as a bait, by co-immunoprecipitation (IP) assays, and by direct binding assays using purified hsc70 and the GST-A2C. The direct interaction of AQP2 with hsc70 is partially inhibited by ATP, and the Ser-256 residue in the AQP2 C terminus is important for this direct interaction. Vasopressin stimulation in cells enhances the interaction of hsc70 with AQP2 in IP assays, and vasopressin stimulation in vivo induces an increased co-localization of hsc70 and AQP2 on the apical membrane of principal cells in rat kidney collecting ducts. Functional knockdown of hsc70 activity in AQP2 expressing cells results in membrane accumulation of AQP2 and reduced endocytosis of rhodamine-transferrin. Our data also show that AQP2 interacts with hsp70 in multiple in vitro binding assays. Finally, in addition to hsc70 and hsp70, AQP2 interacts with several other key components of the endocytotic machinery in co-IP assays, including clathrin, dynamin, and AP2. To summarize, we have identified the 70-kDa heat shock proteins as a AQP2 interactors and have shown for hsc70 that this interaction is involved in AQP2 trafficking.  相似文献   

17.
Mutations in the parkin gene encoding an E3 ligase are responsible for autosomal recessive Parkinson's disease. Putative parkin substrates and interacting partners have been identified, but the molecular mechanism underlying parkin-related neurodegeneration is still unclear. We have identified the 20S proteasomal subunit alpha4 (synonyms: PSMA7, XAPC7, subunit alpha type 7) as a new interacting partner of parkin. The C-terminal IBR-RING domain of parkin and the C-terminal part of alpha4 were essential for the interaction. Biochemical studies revealed that alpha4 was not a substrate for parkin-dependent ubiquitylation. Putative functions of the interaction might therefore be substrate presentation to the proteasome or regulation of proteasomal activity. Full-length parkin and parkin lacking the N-terminal ubiquitin-like domain slightly increased the proteasomal activity in HEK 293T cells, in line with the latter hypothesis.  相似文献   

18.
Polarized delivery and incorporation of proteins and lipids to specific domains of the plasma membrane is fundamental to a wide range of biological processes such as neuronal synaptogenesis and epithelial cell polarization. The exocyst complex is specifically localized to sites of active exocytosis and plays essential roles in secretory vesicle targeting and docking at the plasma membrane. Sec3p, a component of the exocyst, is thought to be a spatial landmark for polarized exocytosis. In a search for proteins that regulate the localization of the exocyst in the budding yeast Saccharomyces cerevisiae, we found that certain cdc42 mutants affect the polarized localization of the exocyst proteins. In addition, we found that these mutant cells have a randomized protein secretion pattern on the cell surface. Biochemical experiments indicated that Sec3p directly interacts with Cdc42 in its GTP-bound form. Genetic studies demonstrated synthetically lethal interactions between cdc42 and several exocyst mutants. These results have revealed a role for Cdc42 in exocytosis. We propose that Cdc42 coordinates the vesicle docking machinery and the actin cytoskeleton for polarized secretion.  相似文献   

19.
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2) and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.  相似文献   

20.
The exocyst consists of eight rod-shaped subunits that align in a side-by-side manner to tether secretory vesicles to the plasma membrane in preparation for fusion. Two subunits, Sec3p and Exo70p, localize to exocytic sites by an actin-independent pathway, whereas the other six ride on vesicles along actin cables. Here, we demonstrate that three of the four domains of Exo70p are essential for growth. The remaining domain, domain C, is not essential but when deleted, it leads to synthetic lethality with many secretory mutations, defects in exocyst assembly of exocyst components Sec5p and Sec6p, and loss of actin-independent localization. This is analogous to a deletion of the amino-terminal domain of Sec3p, which prevents an interaction with Cdc42p or Rho1p and blocks its actin-independent localization. The two mutations are synthetically lethal, even in the presence of high copy number suppressors that can bypass complete deletions of either single gene. Although domain C binds Rho3p, loss of the Exo70p-Rho3p interaction does not account for the synthetic lethal interactions or the exocyst assembly defects. The results suggest that either Exo70p or Sec3p must associate with the plasma membrane for the exocyst to function as a vesicle tether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号