首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA damage detection and repair take place in the context of chromatin, and histone proteins play important roles in these events. Post-translational modifications of histone proteins are involved in repair and DNA damage signalling processes in response to genotoxic stresses. In particular, acetylation of histones H3 and H4 plays an important role in the mammalian and yeast DNA damage response and survival under genotoxic stress. However, the role of post-translational modifications to histones during the plant DNA damage response is currently poorly understood. Several different acetylated H3 and H4 N-terminal peptides following X-ray treatment were identified using MS analysis of purified histones, revealing previously unseen patterns of histone acetylation in Arabidopsis. Immunoblot analysis revealed an increase in the relative abundance of the H3 acetylated N-terminus, and a global decrease in hyperacetylation of H4 in response to DNA damage induced by X-rays. Conversely, mutants in the key DNA damage signalling factor ATM (ATAXIA TELANGIECTASIA MUTATED) display increased histone acetylation upon irradiation, linking the DNA damage response with dynamic changes in histone modification in plants.  相似文献   

2.
组蛋白修饰调节机制的研究进展   总被引:2,自引:0,他引:2  
表观遗传学涉及到DNA甲基化、组蛋白修饰、染色体重塑和非编码RNA调控等内容,其中组蛋白修饰包括组蛋白的乙酰化、磷酸化、甲基化、泛素化及ADP核糖基化等,这些多样化的修饰以及它们时间和空间上的组合与生物学功能的关系又可作为一种重要的表观标志或语言,因而被称为“组蛋白密码”.相同组蛋白残基的磷酸化与去磷酸化、乙酰化与去乙酰化、甲基化与去甲基化等,以及不同组蛋白残基的磷酸化与乙酰化、泛素化与甲基化、磷酸化与甲基化等组蛋白修 饰之间既相互协同又互相拮抗,形成了一个复杂的调节网络.对组蛋白修饰内在调节机制的研究将丰富“组蛋白密码”的内涵.  相似文献   

3.
4.
5.
Cellular differentiation is caused by highly controlled modifications in the gene expression but rarely involves a change in the DNA sequence itself. Histone acetylation is a major epigenetic factor that adds an acetyl group to histone proteins, thus altering their interaction with DNA and nuclear proteins. Illumination of the histone acetylation during dentinogenesis is important for odontoblast differentiation and dentinogenesis. In the current study, we aimed to discover the roles and regulation of acetylation at histone 3 lysine 9 (H3K9ac) and H3K27ac during dentinogenesis. We first found that both of these modifications were enhanced during odontoblast differentiation and dentinogenesis. These modifications are dynamically catalyzed by histone acetyltransferases (HATs) and deacetylases (HDACs), among which HDAC3 was decreased while p300 increased during odontoblast differentiation. Moreover, overexpression of HDAC3 or knockdown p300 inhibited odontoblast differentiation in vitro, and inhibition of HDAC3 and p300 with trichostatin A or C646 regulated odontoblast differentiation. Taken together, the results of our present study suggest that histone acetylation is involved in dentinogenesis and coordinated expression of p300- and HDAC3-regulated odontoblast differentiation through upregulating histone acetylation.  相似文献   

6.
Posttranslational modifications (PTMs) of histone proteins, such as acetylation, methylation, phosphorylation, and ubiquitylation, play essential roles in regulating chromatin dynamics. Combinations of different modifications on the histone proteins, termed 'histone code' in many cases, extend the information potential of the genetic code by regulating DNA at the epigenetic level. Many PTMs occur on non-histone proteins as well as histones, regulating protein-protein interactions, stability, localization, and/or enzymatic activities of proteins involved in diverse cellular processes. Although protein phosphorylation, ubiquitylation, and acetylation have been extensively studied, only a few proteins other than histones have been reported that can be modified by lysine methylation. This review summarizes the current progress on lysine methylation of non-histone proteins, and we propose that lysine methylation, like phosphorylation and acetylation, is a common PTM that regulates proteins in diverse cellular processes.  相似文献   

7.
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.  相似文献   

8.
9.
DNA methylation and histone H4 acetylation play a role in gene regulation by modulating the structure of the chromatin. Recently, these two epigenetic modifications have dynamically and physically been linked. Evidence suggests that both modifications are involved in regulating imprinted genes - a subset of genes whose expression depends on their parental origin. Using immunoprecipitation assays, we investigate the relationship between DNA methylation, histone H4 acetylation and gene expression in the well-characterised imprinted Igf2-H19 domain on mouse chromosome 7. A systematic regional analysis of the acetylation status of the domain shows that parental-specific differences in acetylation of the core histone H4 are present in the promoter regions of both Igf2 and H19 genes, with the expressed alleles being more acetylated than the silent alleles. A correlation between DNA methylation, histone hypoacetylation and gene repression is evident only at the promoter region of the H19 gene. Treatment with trichostatin A, a specific inhibitor of histone deacetylase, reduces the expression of the active maternal H19 allele and this can be correlated with regional changes in acetylation within the upstream regulatory domain. The data suggest that histone H4 acetylation and DNA methylation have distinct functions on the maternal and paternal Igf2-H19 domains.  相似文献   

10.
DNA methylation and histone acetylation are major epigenetic modifications in gene silencing. In our previous research, we found that the methylated oligonucleotide (SurKex) complementary to a region of promoter of survivin could induce DNA methylation in a site-specific manner leading to survivin silencing. Here, we further studied the role of histone acetylation in survivin silencing and the relationship between histone acetylation and DNA methylation.First we observed the levels of histone H4 and H4K16 acetylation that were decreased after SurKex treatment by using the chromatin immunoprecipitation (ChIP) assay. Next, we investigated the roles of histone acetylation and DNA methylation in survivin silencing after blockade of histone deacetylation with Trichostatin A (TSA). We assessed survivin mRNA expression by RT-PCR, measured survivin promoter methylation by bisulfite sequencing and examined the level of histone acetylation by the ChIP assay. The results showed that histone deacetylation blocked by TSA reversed the effects of SurKex on inhibiting the expression of survivin mRNA, inducing a site-specific methylation on survivin promoter and decreasing the level of histone acetylation. Finally, we examined the role of histone acetylation in the expression of DNA methyltransferase 1 (DNMT1) mRNA. The results showed that histone deacetylation blocked by TSA reversed the increasing effect of histone deacetylation on the expression of survivin mRNA. This study suggests that histone deacetylation guides SurKex-induced DNA methylation in survivin silencing possibly through increasing the expression of DNMT1 mRNA.  相似文献   

11.
Zhang K  Sridhar VV  Zhu J  Kapoor A  Zhu JK 《PloS one》2007,2(11):e1210
Post-translational modifications of histones play crucial roles in the genetic and epigenetic regulation of gene expression from chromatin. Studies in mammals and yeast have found conserved modifications at some residues of histones as well as non-conserved modifications at some other sites. Although plants have been excellent systems to study epigenetic regulation, and histone modifications are known to play critical roles, the histone modification sites and patterns in plants are poorly defined. In the present study we have used mass spectrometry in combination with high performance liquid chromatography (HPLC) separation and phospho-peptide enrichment to identify histone modification sites in the reference plant, Arabidopsis thaliana. We found not only modifications at many sites that are conserved in mammalian and yeast cells, but also modifications at many sites that are unique to plants. These unique modifications include H4 K20 acetylation (in contrast to H4 K20 methylation in non-plant systems), H2B K6, K11, K27 and K32 acetylation, S15 phosphorylation and K143 ubiquitination, and H2A K144 acetylation and S129, S141 and S145 phosphorylation, and H2A.X S138 phosphorylation. In addition, we found that lysine 79 of H3 which is highly conserved and modified by methylation and plays important roles in telomeric silencing in non-plant systems, is not modified in Arabidopsis. These results suggest distinctive histone modification patterns in plants and provide an invaluable foundation for future studies on histone modifications in plants.  相似文献   

12.
13.
14.
15.
组蛋白乙酰化与癌症   总被引:17,自引:0,他引:17  
由于组蛋白被修饰所引起的染色质结构的改变,在真核生物基因表达调控中发挥着重要的作用,这些修饰主要包括甲基化、乙酰化、磷酸化和泛素化等,其中组蛋白乙酰化尤为重要.组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)参与决定组蛋白乙酰化状态.HAT通常作为多亚基辅激活物复合体的一部分,催化组蛋白乙酰化,导致染色质结构的松散、激活转录;而HDAC是多亚基辅抑制物复合体的一部分,使组蛋白去乙酰化,导致染色质集缩,并抑制基因的转录. 编码这些酶的基因染色体易位易于导致急性白血病的发生.另一方面,已经确定了一些乙酰化修饰酶的基因在染色体上的位置,它们尤其倾向定位于染色体的断裂处.综述了HAT和HDAC参与的组蛋白乙酰化与癌症发生之间关系的最新进展,以期进一步阐明组蛋白乙酰化修饰酶的生物学功能以及它们在癌症发生过程中的作用.  相似文献   

16.
17.
18.
Posttranslational histone modifications serve critical roles in gene regulation by determining the functional status of chromatin. Histone‐modifying enzymes often work in large multiprotein complexes. A paper in this issue of The EMBO Journal describes a new chromatin‐modifying complex called PEAT that acts via histone deacetylation. The PEAT complex is involved in heterochromatin formation and gene repression but also appears to have a locus‐specific activating role, possibly through promoting histone acetylation.  相似文献   

19.
Sequences proximal to transgene integration sites are able to regulate transgene expression, resulting in complex position effect variegation. Position effect variegation can cause differences in epigenetic modifications, such as DNA methylation and histone acetylation. However, it is not known which factor, position effect or epigenetic modification, plays a more important role in the regulation of transgene expression. We analyzed transgene expression patterns and epigenetic modifications of transgenic pigs expressing green fluorescent protein, driven by the cytomegalovirus (CMV) promoter. DNA hypermethylation and loss of acetylation of specific histone H3 and H4 lysines, except H4K16 acetylation in the CMV promoter, were consistent with a low level of transgene expression. Moreover, the degree of DNA methylation and histone H3/H4 acetylation in the promoter region depended on the integration site; consequently, position effect variegation caused variations in epigenetic modifications. The transgenic pig fibroblast cell lines were treated with DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine and/or histone deacetylase inhibitor trichostatin A. Transgene expression was promoted by reversing the DNA hypermethylation and histone hypoacetylation status. The differences in DNA methylation and histone acetylation in the CMV promoter region in these cell lines were not significant; however, significant differences in transgene expression were detected, demonstrating that variegation of transgene expression is affected by the integration site. We conclude that in this pig model, position effect variegation affects transgene expression.  相似文献   

20.
Nucleosomes are the fundamental packing units of the eukaryotic genome. A nucleosome core particle comprises an octameric histone core wrapped around by ~147bp DNA. Histones and DNA are targets for covalent modifications mediated by various chromatin modification enzymes. These modifications play crucial roles in various gene regulation activities. A group of common hypotheses for the mechanisms of gene regulation involves changes in the structure and structural dynamics of chromatin induced by chromatin modifications. We employed single molecule fluorescence methods to test these hypotheses by monitoring the structure and structural dynamics of nucleosomes before and after histone acetylation and DNA methylation, two of the best-conserved chromatin modifications throughout eukaryotes. Our studies revealed that these modifications induce changes in the structure and structural dynamics of nucleosomes that may contribute directly to the formation of open or repressive chromatin conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号