首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Primary mesenchyme cells (PMC), the skeletogenic cells derived from the micromeres of the sea urchin embryo, are involved in the differentiation of the gut. When PMC were deleted from the mesenchyme blastula, both formation of the constrictions in the gut and expression of endoderm-specific alkaline phosphatase were significantly delayed. Therefore, the correct timing of gut differentiation depends on the existence of PMC, probably via a type of promotive signal. To date, the only role of PMC in other tissue differentiation has been a suppressive signal for the conversion of secondary mesenchyme cells (SMC) into skeletogenic cells. The present experiments using PMC ablation and transplantation showed that both signaling processes occurred in the same short period during gastrulation, but the embryos kept their competence for gut differentiation until a later stage. Further investigations indicated that conversion of SMC did not cause delay in gut differentiation and that SMC did not mediate the PMC signal to the endoderm. Therefore, the effect of PMC on gut differentiation could be a new role that is independent of the suppressive effect for SMC conversion.  相似文献   

2.
3.
The mechanism of micromere specification is one of the central issues in sea urchin development. In this study we have identified a sea urchin homologue of ets 1 + 2. HpEts, which is maternally expressed ubiquitously during the cleavage stage and which expression becomes restricted to the skeletogenic primary mesenchyme cells (PMC) after the hatching blastula stage. The overexpression of HpEts by mRNA injection into fertilized eggs alters the cell fate of non-PMC to migratory PMC. HpEts induces the expression of a PMC-specific spicule matrix protein, SM50, but suppresses of aboral ectoderm-specific arylsulfatase and endoderm-specific HpEndo16. The overexpression of dominant negative delta HpEts which lacks the N terminal domain, in contrast, specifically represses SM50 expression and development of the spicule. In the upstream region of the SM50 gene there exists an ets binding site that functions as a positive cis-regulatory element. The results suggest that HpEts plays a key role in the differentiation of PMCs in sea urchin embryogenesis.  相似文献   

4.
5.
文昌鱼sfy1基因的克隆及其在早期发育中的表达   总被引:1,自引:0,他引:1  
文昌鱼是公认现存最接近于脊椎动物的一种头索动物,具有与脊椎动物相似但简单得多的身体图式[1],因而是研究脊椎动物发育机制起源和进化的宝贵材料,也是发育生物学的经典实验模型之一.近年来,人们在对果蝇和脊椎动物发育分子机制的研究取得了一系列重大突破之后,利用发育调控基  相似文献   

6.
In spite of their potential importance in evolution, there is little information about Hox genes in animal groups that are related to ancestors of deuterostome. It has been reported that only two Hox genes (Hbox1 and Hbox7) are expressed significantly in sea urchin embryos. Expression of Hbox1 protein is restricted to the aboral ectoderm, and Hbox7 expression is restricted to oral ectoderm, endoderm and secondary mesenchyme cells in sea urchin embryos after the gastrula stage. With the aim of gaining insight into the role of Hbox1 and Hbox7 in sea urchin development, Hbox1 and Hbox7 overexpression experiments were performed. Overexpression of Hbox1 repressed the development of oral ectoderm, endoderm and mesenchyme cells. On the contrary, overexpression of Hbox7 repressed the development of aboral ectoderm and primary mesenchyme cells. The data suggest that Hbox1 and Hbox7 are expressed in distinct non-overlapping territories, and overexpression of either one inhibits territory-specific gene expression in the domain of the other. It is proposed that an important function of both Hbox1 and Hbox7 genes is to maintain specific territorial gene expression by each one, in its domain of expression, while repressing the expression of the other in this same domain.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
In Drosophila neurogenesis, proneural genes encode bHLH proteins that are required for neural precursor selection. But many vertebrate homologues are expressed later and are postulated to have multiple roles during neurogenesis. We have isolated a new Drosophila gene, cato, which encodes a protein with a bHLH domain that is closely related to that of the proneural protein Atonal. cato expression is restricted to the developing PNS, where it is expressed in between the stages of precursor selection and terminal differentiation (and therefore later than the proneural genes). We present evidence from loss-of-function and misexpression experiments that cato is involved in sensory neurone morphology. Moreover, in prospero mutants, in which axon and dendrite outgrowth is defective, cato is strongly derepressed in the developing CNS.  相似文献   

15.
The vascular tissues of flowering plants form networks of interconnected cells throughout the plant body. The molecular mechanisms directing the routes of vascular strands and ensuring tissue continuity within the vascular system are not known, but are likely to depend on general cues directing plant cell orientation along the apical-basal axis. Mutations in the Arabidopsis gene MONOPTEROS (MP) interfere with the formation of vascular strands at all stages and also with the initiation of the body axis in the early embryo. Here we report the isolation of the MP gene by positional cloning. The predicted protein product contains functional nuclear localization sequences and a DNA binding domain highly similar to a domain shown to bind to control elements of auxin inducible promoters. During embryogenesis, as well as organ development, MP is initially expressed in broad domains that become gradually confined towards the vascular tissues. These observations suggest that the MP gene has an early function in the establishment of vascular and body patterns in embryonic and post-embryonic development.  相似文献   

16.
17.
Sea urchin fertilization is marked by a massive conversion of molecular oxygen to hydrogen peroxide by a sea urchin dual oxidase, Udx1. This enzyme is essential for completing the physical block to polyspermy. Yet, its expression is maintained during development, as indicated by the presence of both Udx1 mRNA and Udx1 protein enriched at the surface of all non-mesenchymal blastomeres. When hydrogen peroxide synthesis by Udx1 is inhibited, either pharmacologically or by specific antibody injection, cleavage is delayed. Application of exogenous hydrogen peroxide, however, partially rescues a fraction of these defective embryos. We also report an unequal distribution of reactive oxygen species between sister blastomeres during early cleavage stages, suggesting a functional role for Udx1 in intracellular signaling.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号