首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Tumor cells secreting IL-1beta are invasive and metastatic, more than the parental line or control mock-transfected cells, and concomitantly induce in mice general immune suppression of T cell responses. Suppression strongly correlates with accumulation in the peripheral blood and spleen of CD11b+/Gr-1+ immature myeloid cells and hematological alterations, such as splenomegaly, leukocytosis, and anemia. Resection of large tumors of IL-1beta-secreting cells restored immune reactivity and hematological alterations within 7-10 days. Treatment of tumor-bearing mice with the physiological inhibitor of IL-1, the IL-1R antagonist, reduced tumor growth and attenuated the hematological alterations. Depletion of CD11b+/Gr-1+ immature myeloid cells from splenocytes of tumor-bearing mice abrogated suppression. Despite tumor-mediated suppression, resection of large tumors of IL-1beta-secreting cells, followed by a challenge with the wild-type parental cells, induced resistance in mice; protection was not observed in mice bearing tumors of mock-transfected fibrosarcoma cells. Altogether, we show in this study that tumor-derived IL-1beta, in addition to its proinflammatory effects on tumor invasiveness, induces in the host hematological alterations and tumor-mediated suppression. Furthermore, the antitumor effectiveness of the IL-1R antagonist was also shown to encompass restoration of hematological alterations, in addition to its favorable effects on tumor invasiveness and angiogenesis that have previously been described by us.  相似文献   

2.
We previously reported that cytokine gene transfer into weakly immunogenic tumor cells could enhance the generation of precursor cells of tumor-reactive T cells and subsequently augment antitumor efficacy of adoptive immunotherapy. We investigated whether such potent antitumor effector T cells could be generated from mice bearing poorly immunogenic tumors. In contrast to similarly modified weakly immunogenic tumors, MCA102 cells, which are chemically induced poorly immunogenic fibrosarcoma cells transfected with cDNA for IL-2, IL-4, IL-6, IFN-gamma, failed to augment the host immune reaction. Because priming of antitumor effector T cells in vivo requires two important signals provided by tumor-associated Ags and costimulatory molecules, these tumor cells were cotransfected with a B7-1 cDNA. Transfection of both IFN-gamma and B7-1 (MCA102/B7-1/IFN-gamma) resulted in regression of s.c. tumors, while tumor transfected with other combinations of cytokine and B7-1 showed progressive growth. Cotransfection of IFN-gamma and B7-1 into other poorly immunogenic tumor B16 and LLC cells also resulted in the regression of s.c. tumors. Cells derived from lymph nodes draining MCA102/B7-1/IFN-gamma tumors showed potent antitumor efficacy, eradicating established pulmonary metastases, but this effect was not seen with parental tumors. This mechanism of enhanced antitumor efficacy was further investigated, and T cells with down-regulated L-selectin expression, which constituted all the in vivo antitumor reactivity, were significantly increased in lymph nodes draining MCA102/B7-1/IFN-gamma tumors. These T cells developed into potent antitumor effector cells after in vitro activation with anti-CD3/IL-2. The strategy presented here may provide a basis for developing potent immunotherapy for human cancers.  相似文献   

3.
IL-21 is an immune-stimulatory four alpha helix cytokine produced by activated T cells. To study the in vivo antitumor activities of IL-21, TS/A murine mammary adenocarcinoma cells were genetically modified to secrete IL-21 (TS/A-IL-21). These cells developed small tumors that were subsequently rejected by 90% of s.c. injected syngeneic mice. Five days after injection, TS/A-IL-21 tumors showed numerous infiltrating granulocytes, NK cells, and to a lesser extent CD8(+) T cells, along with the expression of TNF-alpha, IFN-gamma, and endothelial adhesion molecules ICAM-1 and VCAM-1. At day 7, CD8(+) and CD4(+) T cells increased together with IFN-gamma, and the CXC chemokines IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and IFN-inducible T cell alpha-chemoattractant. The TS/A-IL-21 tumor displayed a disrupted vascular network with abortive sprouting and signs of endothelial cell damage. In vivo depletion experiments by specific Abs showed that rejection of TS/A-IL-21 cells required CD8(+) T lymphocytes and granulocytes. When injected in IFN-gamma-deficient mice, TS/A-IL-21 cells formed tumors that regressed in only 29% of animals, indicating a role for IFN-gamma in IL-21-mediated antitumor response, but also the existence of IFN-gamma-independent effects. Most immunocompetent mice rejecting TS/A-IL-21 cells developed protective immunity against TS/A-pc (75%) and against the antigenically related C26 colon carcinoma cells (61%), as indicated by rechallenge experiments. A specific CTL response against the gp70-env protein of an endogenous murine retrovirus coexpressed by TS/A and C26 cells was detected in mice rejecting TS/A-IL-21 cells. These data suggest that IL-21 represents a suitable adjuvant in inducing specific CTL responses.  相似文献   

4.
We constructed pSin-SV40-HDV-SV40pA, an improved Sindbis DNA expression vector, and evaluated the potential of this vector system for brain tumor therapy. We investigated whether immunizing mice with xenogeneic DNA encoding human gp100 and mouse IL-18 would enhance the antitumor responses. To study the immune mechanisms involved in tumor regression, we examined tumor growth in B16-gp100-implanted brain tumor models using T-cell subset-depleted and IFN-gamma-neutralized mice. Hugp100/mIL-18 vaccination was also investigated for its antitumor effects against the wild-type murine B16 tumor, which expresses the murine gp100 molecule. Genetic immunization using plasmid pSin 9001 DNA codelivery of human gp100 and mouse IL-18 resulted in enhanced protective and therapeutic effects on the malignant brain tumors. The antitumor and protective effects were mediated by both CD4(+)/CD8(+) T cells and IFN-gamma. Vaccination with hugp100/mIL-18 conferred a significant survival merit to wild-type B16 tumor-harboring mice. Immunogene therapy with the improved Sindbis virus vector expressing xenogeneic gp100 and syngeneic IL-18 may be an excellent approach for developing a new treatment protocol. Thus, the Sindbis DNA system may represent a novel approach for the treatment of malignant brain tumors.  相似文献   

5.
IL-18 and IL-12 are major IFN-gamma-inducing cytokines but the unique synergism of IL-18 and IL-12 remains unclear. In the human NK cell line NKO, IL-18R alpha, and IL-18R beta are expressed constitutively but IL-18 did not induce IFN-gamma unless IL-12 was present. COS-1 fibroblasts, which produce the chemokine IL-8 when stimulated by IL-1 beta or TNF-alpha, do not respond to IL-18, despite abundant expression of the IL-18R alpha chain. COS-1 cells lack expression of the IL-18R beta chain. The IL-18R beta cDNA was cloned from a human T-B lymphoblast cDNA library and COS-1 cells were transiently transfected with the IL-18R beta chain and a luciferase reporter. In transfected COS-1 cells, IL-18 induced IL-8 and luciferase in the absence of IL-12 and independently of IL-1 and TNF. Ab against the IL-18R alpha chain, however, prevented IL-18 responsiveness in COS-1 cells transfected with the IL-18R beta chain, suggesting that both chains be functional. In NKO cells and PBMC, IL-12 increased steady-state mRNA levels of IL-18R alpha and IL-18R beta; the production of IFN-gamma corresponded to IL-12-induced IL-18R alpha and IL-18R beta chains. We conclude that functional reconstitution of the IL-18R beta chain is essential for IL-12-independent proinflammatory activity of IL-18-induced IL-8 in fibroblasts. The synergism of IL-18 plus IL-12 for IFN-gamma production is, in part, due to IL-12 up-regulation of both IL-18R alpha and IL-18R beta chains, although postreceptor events likely contribute to IFN-gamma production.  相似文献   

6.
Previous work from our laboratory has shown that rabbit articular chondrocytes, like macrophages, produce reactive oxygen intermediates, express Ia antigen, and can mediate immunologic functions such as antigen presentation and induction of mixed and autologous lymphocyte reactions. We were interested in seeing if these cells could secrete interleukin-1 (IL-1) or express membrane form of IL-1 (mIL-1). Using the standard C3H/HeJ thymocyte assay, neither secreted IL-1 nor mIL-1 activity was detected in untreated or LPS-treated chondrocytes. However, the D10.G4.1 proliferation assay showed that chondrocytes, stimulated with LPS, secrete IL-1 and express the mIL-1 in a dose- and time-dependent manner. The IL-1 activity in LPS-stimulated chondrocyte supernatant and on fixed cells could be inhibited by anti-IL-1 antibodies. Sephadex G-75 chromatography of pooled, concentrated LPS culture supernatant resolved into two peaks of IL-1 activity at 13-17 and at 45-70 kDa, respectively. The bioactivity of chromatographic fractions were similar using both the thymocyte and D10.G4.1 bioassays. Western blot analysis of chondrocyte supernatant detects 17-kDa IL-1 beta; no processed 17-kDa IL-1 alpha was seen but IL-1 alpha-specific reactivity was observed at 64 kDa. Immunoblot analysis of chondrocyte lysates shows that cell-associated IL-1 is IL-1 alpha and is 37 kDa in size. PCR analysis shows the presence of mRNA for IL-1 beta and IL-1 alpha in LPS-treated cells; IL-1 beta mRNA was detected in untreated chondrocytes. The inability to detect IL-1 by the thymocyte assay is due to the presence of a chondrocyte inhibitor of IL-1 that can be demonstrated in cell sonicates, supernatants, and on paraformaldehyde-fixed chondrocytes. Chromatography of LPS-stimulated supernatant showed a peak of IL-1 inhibitory activity at 21-45 kDa. Chondrocytes which secrete IL-1 and express mIL-1 could play a critical role in maintaining chronic inflammation in rheumatoid arthritis. Therefore, the ability of chondrocytes to produce both IL-1 and an inhibitor to IL-1 is important in interpreting the mechanism of cartilage matrix maintenance and degradation.  相似文献   

7.
Dendritic cells are powerful APCs for activation of specific antitumor T lymphocytes. To present tumor Ags efficiently, they have first to migrate to the tumor site, engulf Ag, and then process them. To attract immature DCs to the tumor site, we transfected tumor cells with MIP-3alpha which is strongly chemotactic for DCs. Surprisingly, MIP-3alpha-transfected tumor cells grew faster than the mock-transfected tumor cells. Histological analysis and tumor dissociation confirmed that the MIP-3alpha-transfected tumors contain three to four times more DCs than mock-transfected tumors. FACS analysis of the intratumor DCs showed that they were predominantly immature. Functional analysis showed that the alloreactivity mediated by these infiltrating MIP-3alpha-transfected tumor DCs is strongly reduced. In conclusion, MIP-3alpha is an efficient chemokine for attracting DCs in vivo, but the high density of DCs in the tumor site injection is not a sufficient condition to induce an immune response. Furthermore, this attraction of immature DCs may always have an adverse effect by inducing a tolerance to the tumor cells.  相似文献   

8.
To study the antitumor effect of local production of interleukin-2 (IL-2) from tumor cells, the poorly immunogenic murine colon cancer cells, colon26, was transfected with murine IL-2 cDNA in a bovine papilloma virus vector. IL-2 gene transfectants (mIL2+colon26) did not alter their growth rate compared with parental colon26 cells in vitro, but reduced their tumorigenicity in vivo. Immunization with mIL2+colon26 cells could induce protective immunity against parental colon26 cells. Following intravenous challenges, the colonies of lung metastasis were also inhibited. Moreover, inoculation of mIL2+ colon26 cells slowed the growth of challenged renal cell carcinoma cells, RenCa. Intraperitoneal inoculation of IL-2 gene transfectants generated a large number of peritoneal exudate cells and these cells had a highly cytolytic activity against colon26 and YAC-1. These results suggest that inoculation with IL-2 transfected tumor cells can stimulate not only cytotoxic T lymphocytes but also natural killer cells, and that these cells will act as antitumor effector cells in host animals.  相似文献   

9.
The cooperative antitumor effects of IL-12 and IL-15 gene transfer were studied in the N592 MHC class I-negative small cell lung cancer cell line xenotransplanted in nude mice. N592 cells engineered to secrete IL-15 displayed a significantly reduced tumor growth kinetics, and a slightly reduced tumor take rate, while N592 engineered with IL-12 displayed only minor changes in their growth in nude mice. However, N592 cells producing both cytokines were completely rejected, and produced a potent local bystander effect, inducing rejection of coinjected wild-type tumor cells. N592/IL-12/IL-15 cells were completely and promptly rejected also in NK-depleted nude mice, while in granulocyte-depleted animals a slight delay in the rejection process was observed. Immunohistochemical analyses of the N592/IL-12/IL-15 tumor area in intact nude mice revealed the presence of infiltrating macrophages, granulocytes, and NK cells, and expression of inducible NO synthase and of secondary cytokines such as IL-1beta, TNF-alpha, and IFN-gamma, and at higher levels GM-CSF, macrophage-inflammatory protein-2, and monocyte chemoattractant protein-1. In NK cell-depleted nude mice, numerous macrophages and granulocytes infiltrated the tumor, and a strong expression of macrophage-inflammatory protein-2 and inducible NO synthase was also observed. Finally, macrophages cocultured with N592/IL-12/IL-15 produced NO in vitro, and inhibited tumor cell growth, further suggesting their role as effector cells in this model.  相似文献   

10.
Immunization strategies using plasmid DNA can potentially improve humoral and cellular immune responses that protect against cancer and infectious diseases. The chicken anemia virus-derived Apoptin protein exhibits remarkable specificity in its ability to induce apoptosis in tumor cells, but not in normal diploid cells. Interleukin-18 (IL-18) is a Th1-type cytokine that has demonstrated potential as a biological adjuvant in murine tumor models. In this study, we analyzed the anti-tumor potential and mechanism of action of simultaneous Apoptin and IL-18 gene transfer in C57BL/6 mice bearing Lewis lung carcinoma (LLC). Here we report that the growth of established tumors in mice immunized with pAPOPTIN in conjunction with pIL-18 was significantly inhibited compared with the growth of tumors in mice immunized with the empty vector (EV) or pAPOPTIN alone. Furthermore, the immunization of mice with pAPOPTIN in conjunction with pIL-18 elicited strong natural killer activity and LLC tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro. In addition, T cells from lymph nodes of mice vaccinated with pIL-18 or pAPOPTIN + pIL-18 secreted high levels of the Th1 cytokine IL-2 and IFN-γ, indicating that the regression of tumor cells is related to a Th1-type dominant immune response. These results demonstrate that vaccination with Apoptin together with IL-18 may be a novel and powerful strategy for cancer immunotherapy.  相似文献   

11.
Inflammatory cytokines modulate immune responses in the tumor microenvironment during progression/metastasis. In this study, we have assessed the role of IL-1 and IL-17 in the control of antitumor immunity versus progression in a model of experimental lung metastasis, using 3LL and B16 epithelial tumor cells. The absence of IL-1 signaling or its excess in the lung microenvironment (in IL-1β and IL-1R antagonist knockout [KO] mice, respectively) resulted in a poor prognosis and reduced T cell activity, compared with WT mice. In IL-1β KO mice, enhanced T regulatory cell development/function, due to a favorable in situ cytokine network and impairment in APC maturation, resulted in suppressed antitumor immunity, whereas in IL-1R antagonist KO mice, enhanced accumulation and activity of myeloid-derived suppressor cells were found. Reduced tumor progression along with improved T cell function was found in IL-17 KO mice, compared with WT mice. In the microenvironment of lung tumors, IL-1 induces IL-17 through recruitment of γ/δ T cells and their activation for IL-17 production, with no involvement of Th17 cells. These interactions were specific to the microenvironment of lung tumors, as in intrafootpad tumors in IL-1/IL-17 KO mice, different patterns of invasiveness were observed and no IL-17 could be locally detected. The results highlight the critical and unique role of IL-1, and cytokines induced by it such as IL-17, in determining the balance between inflammation and antitumor immunity in specific tumor microenvironments. Also, we suggest that intervention in IL-1/IL-17 production could be therapeutically used to tilt this balance toward enhanced antitumor immunity.  相似文献   

12.
IL-1 gene expression in lymphoid tissues   总被引:1,自引:0,他引:1  
We examined the expression of IL-1 mRNA in vivo by in situ hybridization. RNA probes for murine IL-1 alpha and IL-1 beta were used to detect IL-1 mRNA in frozen sections of spleen, lymph node, and thymus of mice injected with Salmonella typhi LPS or SRBC. No IL-1 was detected in lymphoid tissues from un-injected mice. This lack of expression correlated with the absence of IL-1 biologic activity. However, after LPS injection, IL-1 alpha and beta mRNA expression was found in macrophages of the red pulp and marginal zone of the spleen. The periarteriolar lymphoid sheath contained cells that only expressed IL-1 beta mRNA. These cells were not lymphocytes and did not stain with the macrophage marker F4/80. A similar cellular response was found after SRBC injection. Scattered macrophages in lymph nodes and thymus were positive, but only after LPS or SRBC injection. The spleens of mice injected with LPS had megakaryocytes containing IL-1 mRNA.  相似文献   

13.
Antiangiogenic and antitumor activities of IL-27   总被引:10,自引:0,他引:10  
IL-27 is a novel IL-6/IL-12 family cytokine playing an important role in the early regulation of Th1 responses. We have recently demonstrated that IL-27 has potent antitumor activity, which is mainly mediated through CD8(+) T cells, against highly immunogenic murine colon carcinoma. In this study, we further evaluated the antitumor and antiangiogenic activities of IL-27, using poorly immunogenic murine melanoma B16F10 tumors, which were engineered to overexpress single-chain IL-27 (B16F10 + IL-27). B16F10 + IL-27 cells exerted antitumor activity against not only s.c. tumor but also experimental pulmonary metastasis. Similar antitumor and antimetastatic activities of IL-27 were also observed in IFN-gamma knockout mice. In NOD-SCID mice, these activities were decreased, but were still fairly well-retained, suggesting that different mechanisms other than the immune response are also involved in the exertion of these activities. Immunohistochemical analyses with Abs against vascular endothelial growth factor and CD31 revealed that B16F10 + IL-27 cells markedly suppressed tumor-induced neovascularization in lung metastases. Moreover, B16F10 + IL-27 cells clearly inhibited angiogenesis by dorsal air sac method, and IL-27 exhibited dose-dependent inhibition of angiogenesis on chick embryo chorioallantoic membrane. IL-27 was revealed to directly act on HUVECs and induce production of the antiangiogenic chemokines, IFN-gamma-inducible protein (IP-10) and monokine induced by IFN-gamma. Finally, augmented mRNA expression of IP-10 and monokine induced by IFN-gamma was detected at the s.c. B16F10 + IL-27 tumor site, and antitumor activity of IL-27 was partially inhibited by the administration of anti-IP-10. These results suggest that IL-27 possesses potent antiangiogenic activity, which plays an important role in its antitumor and antimetastatic activities.  相似文献   

14.
Interleukin 13 (IL-13) is immunoregulatory in many diseases, including cancer. The protective or suppressive role of CD1-restricted natural killer T cells (NKT cells) in tumor immunosurveillance and immunity is well documented. Interleukin 12 (IL-12) can activate type I NKT cells to produce interferon-gamma (IFN-gamma), whereas type II NKT cells may produce IL-13. The high-affinity chain of IL-13Ralpha2 may act as negative inhibitor, suppressing the action of IL-13 and helping to maintain tumor immunosurveillance. We constructed an mIL-13Ralpha2-Fc chimera in a eukaryotic expression vector and confirmed the identity of the recombinant protein by immunoblot analysis and binding to IL-13 in chemiluminescent ELISA. Such DNA vaccine was tested against syngeneic B16F10-Nex2 murine melanoma. In vivo experiments showed a protective effect mediated by high production of IFN-gamma and down-regulation of anti-inflammatory interleukins mainly by NKT 1.1(+) T cells. Biochemoterapy in vivo with plasmid encoding mIL-13Ralpha2-Fc in association with plasmid encoding IL-12 and the 7A cyclopalladated drug led to a significant reduction in the tumor evolution with 30% tumor-free mice. We conclude that IL-12 gene therapy, followed by continuous administration of IL-13Ralpha2-Fc gene along with 7A-drug has antitumor activity involving the high production of proinflammatory cytokines and low immune suppression, specifically by NK1.1(+)T cells producing IL-13 and IL-10.  相似文献   

15.
16.
IL-28 elicits antitumor responses against murine fibrosarcoma   总被引:3,自引:0,他引:3  
IL-28 is a recently described antiviral cytokine. In this study, we investigated the biological effects of IL-28 on tumor growth to evaluate its antitumor activity. IL-28 or retroviral transduction of the IL-28 gene into MCA205 cells did not affect in vitro growth, whereas in vivo growth of MCA205IL-28 was markedly suppressed along with survival advantages when compared with that of controls. When the metastatic ability of IL-28-secreting MCA205 cells was compared with that of controls, the expression of IL-28 resulted in a potent inhibition of metastases formation in the lungs. IL-28-mediated suppression of tumor growth was mostly abolished in irradiated mice, indicating that irradiation-sensitive cells, presumably immune cells, are primarily involved in the IL-28-induced suppression of tumor growth. In vivo cell depletion experiments displayed that polymorphonuclear neutrophils, NK cells, and CD8 T cells, but not CD4 T cells, play an equal role in the IL-28-mediated inhibition of in vivo tumor growth. Consistent with these findings, inoculation of MCA205IL-28 into mice evoked enhanced IFN-gamma production and cytotoxic T cell activity in spleen cells. Antitumor action of IL-28 is partially dependent on IFN-gamma and is independent of IL-12, IL-17, and IL-23. IL-28 increased the total number of splenic NK cells in SCID mice and enhanced IL-12-induced IFN-gamma production in vivo and expanded spleen cells in C57BL/6 mice. Moreover, IL-12 augmented IL-28-mediated antitumor activity in the presence or absence of IFN-gamma. These findings indicate that IL-28 has bioactivities that induce innate and adaptive immune responses against tumors.  相似文献   

17.
Immunosuppressive therapy for organ transplantation is essential for controlling rejection. When liver transplantation is performed as a therapy for hepatocellular carcinoma (HCC), recurrent HCC is one of the most fatal complications. In this study, we show that intratumoral murine IL-12 (mIL-12) gene therapy has the potential to be an effective treatment for malignancies under immunosuppression. C3H mice (H-2(k)), injected with FK506 (3 mg/kg) i.p., were s.c. implanted with 2.5 x 10(6) MH134 cells (H-2(k)) and we treated the established HCC with electroporation-mediated gene therapy using mIL-12 plasmid DNA. Intratumoral gene transfer of mIL-12 elevated intratumoral mIL-12, IFN-gamma, and IFN-gamma-inducible protein-10, significantly reduced the number of microvessels and inhibited the growth of HCC, compared with HCC-transferred control pCAGGS plasmid. The inhibition of tumor growth in immunosuppressed mice was comparable with that of mIL-12 gene therapy in immunocompetent mice. Intratumoral mIL-12 gene therapy enhanced lymphocytic infiltration into the tumor and elicited the MH134-specific CTL response even under FK506. The dose of FK506 was sufficient to prevent the rejection of distant allogenic skin grafts (BALB/c mice, H-2(d)) and tumors, B7-p815 (H-2(d)) used as transplants, during mIL-12 gene therapy against MH134. Ab-mediated depletion studies suggested that the inhibition of tumor growth, neovascularization, and spontaneous lung metastasis by mIL-12 was dependent almost entirely on NK cells and partially on T cells. These results suggest that intratumoral mIL-12 gene therapy is a potent effective strategy not only to treat recurrences of HCC in liver transplantation, but also to treat solid malignant tumors in immunosuppressed patients with transplanted organ.  相似文献   

18.
Interleukin-18 acts as an angiogenesis and tumor suppressor.   总被引:33,自引:0,他引:33  
R Cao  J Farnebo  M Kurimoto  Y Cao 《FASEB journal》1999,13(15):2195-2202
Interleukin-18 (IL-18), also called interferon-gamma (IFN-gamma)-inducing factor, has recently been characterized as a potent IFN-gamma-inducing cytokine. We now report that IL-18 is a novel antiangiogenic and antitumor cytokine. In vitro, IL-18 specifically inhibits fibroblast growth factor-2-stimulated proliferation of capillary endothelial cells. In vivo, IL-18 is sufficiently potent to suppress the fibroblast growth factor-induced corneal neovascularization by systemic administration in mice. This cytokine also inhibits embryonic angiogenesis in the chick chorioallantoic membrane assay. Systemic and intralesional administrations of IL-18 produce a significant suppression of the growth of murine T241 fibrosarcoma in syngeneic C57Bl6/J and immunodeficient SCID mice. The antitumor effect appears to be potent because an average of >75% inhibition of primary tumor growth was observed at a dose of 50 microg/kg/day. In cell culture, murine T241 fibrosarcoma cells are insensitive to recombinant IL-18 at concentrations that significantly inhibit endothelial cell proliferation. Immunohistochemical studies of tumor tissues reveal hypovascularization of the IL-18-treated tumors. These results suggest that IL-18 may participate in the regulation of a switch of tumor angiogenesis.-Cao, R., Farnebo, J., Kurimoto, M., Cao, Y. Interleukin-18 acts as an angiogenesis and tumor suppressor.  相似文献   

19.
Summary To study parameters that affect the tumorigenicity of L1210 lymphoma we have analyzed the structure of MHC class I antigens of this tumor. In addition this tumor was transfected with interleukin-2 (IL-2) cDNA in order to determine the effects of high concentrations of IL-2 within the tumor environment. The nucleotide sequence of the class I Kd, Dd and Ld mRNAs from this tumor showed that the encoded amino acid sequence of the corresponding antigens is normal, thus suggesting that the tumorigenicity of L1210 lymphoma is not due to defective antigen presentation to tumor-specific cytotoxic T cells. In contrast, induction of IL-2 expression by cDNA transfection led to loss of tumorigenicity of the IL-2-secreting tumor cells. However, a fraction of long-term-surviving mice developed progressively growing variant tumors that showed substantial decrease or loss of IL-2 expression. These results suggest that IL-2 secretion by tumors is suicidal but, because of tumor heterogeneity, IL-2-loss-variant tumors may arise that are able to escape the immune defenses of the host. The observed consistent loss of IL-2 expression in variant tumors implies that specific targeting of large quantities of IL-2 to tumor cells may be a valuable approach to immunotherapy of cancer. In addition we find that under specific gamma ray irradiation IL-2-secreting tumor cells lose their ability to multiply yet continue to secrete IL-2 at levels equivalent to those secreted by unirradiated cells. Such IL-2-secreting irradiated tumor cells were found to be superior immunogens in comparison to the irradiated parental tumor cells, suggesting their use as tumor vaccines.  相似文献   

20.
In vivo electroporation (EP) of the murine interleukin-12 (IL-12) gene in an expression plasmid (pIL-12) was evaluated for antitumor activity. EP transfer of pIL-12 into mouse quadriceps muscles elicited significant levels of serum IL-12 and interferon-gamma. Intramuscular EP of pIL-12 resulted in complete regression or substantial inhibition of 38C13 B-cell lymphoma, whereas pIL-12 delivered by gene gun or intramuscular injection without EP showed little therapeutic effect. Impressive antitumor activity by intramuscular EP was also demonstrated in animals with advanced malignant disease. At day 14 after 38C13 tumor inoculation, all animals were found to carry large tumors and to have metastases; without treatment, most died within a week. A single intramuscular EP of pIL-12 resulted in regression of 50% of large subcutaneous tumors and significantly prolonged the lifespan of these animals. Moreover, animals that were previously cured of 38C13 tumors by in vivo EP treatment significantly suppressed tumor growth when challenged 60 days later. In vivo EP of the IL-12 gene was also effective in suppressing subcutaneous and lung metastatic tumors of CT-26 colon adenocarcinoma and B16F1 melanoma cells. Together, these results show that intramuscular electrotransfer of the IL-12 gene may represent a simple and effective strategy for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号