首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Profilin inhibits the rate of nucleation of actin polymerization and the rate of filament elongation and also reduces the concentration of F-actin at steady state. Addition of profilin to solutions of F-actin causes depolymerization. The same steady state concentrations of polymerized and nonpolymerized actin are reached whether profilin is added before initiation of polymerization or after polymerization is complete. The KD for formation of the 1:1 complex between Acanthamoeba profilin and Acanthamoeba actin is in the range of 4 to 11 microM; the KD for the reaction between Acanthamoeba profilin and rabbit skeletal muscle actin is about 60 to 80 microM, irrespective of the concentrations of KCl or MgCl2. The critical concentration of actin for polymerization and the KD for the actin-profilin interaction are independent of each other; therefore, a change in the critical concentration of actin alters the amount of actin bound to profilin at steady state. As a consequence, the presence of profilin greatly amplifies the effects of small changes in the actin critical concentration on the concentration of F-actin. Profilin also inhibits the ATPase activity of monomeric actin, the profilin-actin complex being entirely inactive.  相似文献   

2.
Reinvestigation of the inhibition of actin polymerization by profilin   总被引:11,自引:0,他引:11  
In buffer containing 50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 5 mM imidazole, pH 7.5, 0.1 mM CaCl2, 0.2 mM dithiothreitol, 0.01% NaN3, and 0.2 mM ATP, the KD for the formation of the 1:1 complex between Acanthamoeba actin and Acanthamoeba profilin was about 5 microM. When the actin was modified by addition of a pyrenyl group to cysteine 374, the KD increased to about 40 microM but the critical concentration (0.16 microM) was unchanged. The very much lower affinity of profilin for modified actin explains the anomalous critical concentrations curves obtained for 5-10% pyrenyl-labeled actin in the presence of profilin and the apparently weak inhibition by profilin of the rate of filament elongation when polymerization is quantified by the increase in fluorescence of pyrenyl-labeled actin. Light-scattering assays of the polymerization of unmodified actin in the absence and presence of profilin gave a similar value for the KD (about 5-10 microM) when determined by the increase in the apparent critical concentration of F-actin at steady state at all concentrations of actin up to 20 microM and by the inhibition of the initial rates of polymerization of actin nucleated by either F-actin or covalently cross-linked actin dimer. In the same buffer, but with ADP instead of ATP, the critical concentration of actin was higher (4.9 microM) and the KD of the profilin-actin complex was lower for both unmodified (1-2 microM) and 100% pyrenyl-labeled actin (4.9 microM).  相似文献   

3.
Acanthamoeba profilin strongly inhibits in a concentration-dependent fashion the rate and extent of Acanthamoeba actin polymerization in 50 mM KCl. The lag phase is prolonged indicating reduction in the rate of nucleus formation. The elongation rates at both the barbed and pointed ends of growing filaments are inhibited. At steady state, profilin increases the critical concentration for polymerization but has no effect on the reduced viscosity above the critical concentration. Addition of profilin to polymerized actin causes it to depolymerize until a new steady-state, dependent on profilin concentration, is achieved. These effects of profilin can be explained by the formation of a 1:1 complex with actin with a dissociation constant of 1 to 4 microM. MgCl2 strongly inhibits these effects of profilin, most likely by binding to the high-affinity divalent cation site on the actin. Acanthamoeba profilin has similar but weaker effects on muscle actin, requiring 5 to 10 times more profilin than with amoeba actin.  相似文献   

4.
Actobindin is a new actin-binding protein isolated from Acanthamoeba castellanii. It is composed of two possibly identical polypeptide chains of approximately 13,000 daltons, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and with isoelectric points of 5.9. In the native state, actobindin appears to be a dimer of about 25,000 daltons by sedimentation equilibrium analysis. It contains no tryptophan and probably no tyrosine. Actobindin reduces the concentration of F-actin at steady state and inhibits the rate of filament elongation to extents consistent with the formation of a 1:1 actobindin-G-actin complex in a reaction with a KD of about 5 microM. The available data do not eliminate the possibility of other stoichiometries for the complex, but they are not consistent with any significant interaction between actobindin and F-actin. Despite the similarities between the effects of actobindin and Acanthamoeba profilin on the polymerization of Acanthamoeba actin, the two proteins are quite distinct with different native and subunit molecular weights, different isoelectric points, and different amino acid compositions. Also, unlike profilin, actobindin binds as well to rabbit skeletal muscle G-actin and to pyrenyl-labeled G-actin as it does to unmodified Acanthamoeba G-actin.  相似文献   

5.
We have quantitated the in vitro interactions of profilin and the profilin-actin complex (PA) with the actin filament barbed end using profilin and nonmuscle beta,gamma-actin prepared from bovine spleen. Actin filament barbed end elongation was initiated from spectrin seeds in the presence of varying profilin concentrations and followed by light scattering. We find that profilin inhibits actin polymerization and that this effect is much more pronounced for beta,gamma-actin than for alpha-skeletal muscle actin. Profilin binds to beta,gamma-actin filament barbed ends with an equilibrium constant of 20 microM, decreases the filament elongation rate by blocking addition of actin monomers, and increases the dissociation rate of actin monomers from the filament end. PA containing bound MgADP supports elongation of the actin filament barbed end, indicating that ATP hydrolysis is not necessary for PA elongation of filaments. Initial analysis of the energetics for these reactions suggested an apparent greater negative free energy change for actin filament elongation from PA than elongation from monomeric actin. However, we calculate that the free energy changes for the two elongation pathways are equal if the profilin-induced weakening of nucleotide binding to actin is taken into consideration.  相似文献   

6.
F-actin at steady state in the presence of ATP partially depolymerized to a new steady state upon mechanical fragmentation. The increase in critical concentration with the number concentration of filaments has been quantitatively studied. The data can be explained by a model in which the preferred pathway for actin association-dissociation reactions at steady state in the presence of ATP involves binding of G-actin . ATP to filaments, ATP hydrolysis, and dissociation of G-actin . ADP which is then slowly converted to G-actin . ATP. As a consequence of the slow exchange of nucleotide on G-actin, the respective amounts of G-actin . ATP and G-actin . ADP coexisting with F-actin at steady state depend on the filament number concentration. G-actin coexisting with F-actin at zero number concentration of filaments would then consist of G-actin . ATP only, while the critical concentration obtained at infinite number of filaments would be that for G-actin . ADP. Values of 0.35 and 8 microM, respectively, were found for these two extreme critical concentrations for skeletal muscle actin at 20 degrees C, pH 7.8, 0.1 mM CaCl2, 1 mM MgCl2, and 0.2 mM ATP. The same value of 8 microM was directly measured for the critical concentration of G-actin . ADP polymerized in the presence of ADP and absence of ATP, and it was unaffected by fragmentation. These results have important implications for experiments in which critical concentrations are compared under conditions that change the filament number concentrations.  相似文献   

7.
Study of actin filament ends in the human red cell membrane   总被引:7,自引:0,他引:7  
There is conflicting evidence concerning the state of the actin protofilaments in the membrane cytoskeleton of the human red cell. To resolve this uncertainty, we have analysed their characteristics with respect to nucleation of G-actin polymerization. The effects of cytochalasin E on the rate of elongation of the protofilaments have been measured in a medium containing 0.1 M-sodium chloride and 5 mM-magnesium chloride, using pyrene-labelled G-actin. At an initial monomer concentration far above the critical concentration for the negative ("pointed") end of F-actin, high concentrations of cytochalasin reduce the elongation rate of free F-actin by about 70%. The residual rate is presumed to correspond to the elongation rate at the negative ends. By contrast, the elongation rate on red cell ghosts or cytoskeletons falls to zero, allowing for the background of self-nucleated polymerization of the G-actin. The critical concentration of the actin in the red cell membrane has been measured after elongation of the filaments by added pyrenyl-G-actin in the same solvent. It was found to be 0.07 microM, compared with 0.11 microM under the same conditions for actin alone. This is consistent with prediction for the case of blocked negative ends on the red cell actin. The rate of elongation of actin filaments, free and in the red cell membrane cytoskeleton, has been measured as a function of the concentration of an added actin-capping protein, plasma gelsolin, with a high affinity for the positive ends. The elongation rate falls linearly with increasing gelsolin concentration until it approaches a minimum when the gelsolin has bound to all positive filament ends. The elongation rate at this point corresponds to the activity of the negative ends, and its ratio to the unperturbed polymerization rate (in the absence of capping proteins) is indistinguishable from zero in the case of ghosts, but about 1 : 4 in the case of F-actin. When ATP is replaced in the system by ADP, so that the critical concentrations at the two filament ends are equalized, the difference is equally well-marked: for F-actin, the rate at the equivalence point is about 40% of that in the absence of capping protein, whereas for ghosts the nucleated polymerization rate at the equivalence point is again zero, indicating that under these conditions the negative ends contribute little or not at all to the rate of elongation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Fragmin is a Ca2(+)-sensitive F-actin-severing protein purified from a slime mold, Physarum polycephalum (Hasegawa, T., S. Takahashi, H. Hayashi, and S. Hatano. 1980. Biochemistry. 19:2677-2683). It binds to G-actin to form a 1:1 fragmin/actin complex in the presence of micromolar free Ca2+. The complex nucleates actin polymerization and caps the barbed end of the short F-actin (Sugino, H., and S. Hatano. 1982. Cell Motil. 2:457-470). Subsequent removal of Ca2+, however, hardly dissociates the complex. This complex nucleates actin polymerization and caps the F-actin regardless of Ca2+ concentration. Here we report that this activity of fragmin-actin complex can be abolished by phosphorylation of actin of the complex. When crude extract from Physarum plasmodium was incubated with 5 mM ATP and 1 mM EGTA, the activities of the complex decreased to a great extent. The inactivation of the complex in the crude extract was not observed in the presence of Ca2+. In addition, the activities of the complex inactivated in the crude extract were restored under conditions suitable for phosphatase reactions. We purified factors that inactivated fragmin-actin complex from the crude extract. These factors phosphorylated actin of the complex, and the activities of the complex decreased with an increased level of phosphorylation of the complex. These factors, termed actin kinase, also inactivated the complex that capped the barbed end of short F-actin, leading to elongation of the short F-actin to long F-actin. Thus the length of F-actin can be controlled by phosphorylation of fragmin-actin complex by actin kinase.  相似文献   

9.
Mechanism of the interaction of human platelet profilin with actin   总被引:24,自引:4,他引:20  
We have reexamined the interaction of purified platelet profilin with actin and present evidence that simple sequestration of actin monomers in a 1:1 complex with profilin cannot explain many of the effects of profilin on actin assembly. Three different methods to assess binding of profilin to actin show that the complex with platelet actin has a dissociation constant in the range of 1 to 5 microM. The value for muscle actin is similar. When bound to actin, profilin increases the rate constant for dissociation of ATP from actin by 1,000-fold and also increases the rate of dissociation of Ca2+ bound to actin. Kinetic simulation showed that the profilin exchanges between actin monomers on a subsecond time scale that allows it to catalyze nucleotide exchange. On the other hand, polymerization assays give disparate results that are inconsistent with the binding assays and each other: profilin has different effects on elongation at the two ends of actin filaments; profilin inhibits the elongation of platelet actin much more strongly than muscle actin; and simple formation of 1:1 complexes of actin with profilin cannot account for the strong inhibition of spontaneous polymerization. We suggest that the in vitro effects on actin polymerization may be explained by a complex mechanism that includes weak capping of filament ends and catalytic poisoning of nucleation. Although platelets contain only 1 profilin for every 5-10 actin molecules, these complex reactions may allow substoichiometric profilin to have an important influence on actin assembly. We also confirm the observation of I. Lassing and U. Lindberg (1985. Nature [Lond.] 318:472-474) that polyphosphoinositides inhibit the effects of profilin on actin polymerization, so lipid metabolism must also be taken into account when considering the functions of profilin in a cell.  相似文献   

10.
The mechanism of the interaction between two genetically determined serum vitamin D-binding protein forms and the muscle skeletal actin was investigated. Vitamin D-binding protein was isolated in a good yield from human serum, using immunoaffinity chromatography. 16 mg of pure vitamin D-binding protein were obtained from 100 ml of serum. The interaction between purified vitamin D-binding protein and skeletal muscle actin was studied by viscosity, delta A (232 nm) measurements and by electron microscopy. The effect of vitamin D-binding protein on actin polymerization is characterized by the decrease of the nucleation and elongation rates and by the decrease of the final concentration of polymerized actin in the steady state. The depolymerizing effect is not the result of direct action on vitamin D-binding protein on F-actin but rather of an increased concentration of the complex of the former protein with G-actin. The characteristics of the vitamin D-binding protein and profilin interactions with actin are similar. Both proteins seem to react only with G-actin.  相似文献   

11.
The effects of different ratio of native profilin on maize (Zea mays L.) pollen actin polymerization in vitro were analyzed by using ultracentrifuging sedimentation and ultraviolet absorption spectrum measurement (the molar ratio of profilin to actin was 2∶1, 1.5∶1, 1∶1, 0.5∶1, 0.1∶1 respectively). Preliminary results showed that profilin bound to G-actin and inhibited its polymerization. The inhibition of actin polymerization by profilin increased with the increasing ratio of profilin to pollen actin. The dissociation constant (Kd) value of profilin for binding to actin was (1.30±0.33) μmol/L. No stimulation effect of profilin on actin polymerization was observed, suggesting that pollen profilin may affect actin organization by sequestering the G-actin.  相似文献   

12.
Mechanism of actin polymerization in cellular ATP depletion   总被引:5,自引:0,他引:5  
Cellular ATP depletion in diverse cell types results in the net conversion of monomeric G-actin to polymeric F-actin and is an important aspect of cellular injury in tissue ischemia. We propose that this conversion results from altering the ratio of ATP-G-actin and ADP-G-actin, causing a net decrease in the concentration of thymosinactin complexes as a consequence of the differential affinity of thymosin beta4 for ATP- and ADP-G-actin. To test this hypothesis we examined the effect of ATP depletion induced by antimycin A and substrate depletion on actin polymerization, the nucleotide state of the monomer pool, and the association of actin monomers with thymosin and profilin in the kidney epithelial cell line LLC-PK1. ATP depletion for 30 min increased F-actin content to 145% of the levels under physiological conditions, accompanied by a corresponding decrease in G-actin content. Cytochalasin D treatment did not reduce F-actin formation during ATP depletion, indicating that it was predominantly not because of barbed end monomer addition. ATP-G-actin levels decreased rapidly during depletion, but there was no change in the concentration of ADP-G-actin monomers. The decrease in ATP-G-actin levels could be accounted for by dissociation of the thymosin-G-actin binary complex, resulting in a rise in the concentration of free thymosin beta4 from 4 to 11 microm. Increased detection of profilin-actin complexes during depletion indicated that profilin may participate in catalyzing nucleotide exchange during depletion. This mechanism provides a biochemical basis for the accumulation of F-actin aggregates in ischemic cells.  相似文献   

13.
We have investigated the effects of profilin on nucleotide binding to actin and on steady state actin polymerization. The rate constants for the dissociation of ATP and ADP from monomeric Mg-actin at physiological conditions are 0.003 and 0.009 s-1, respectively. Profilin increases these dissociation rate constants to 0.08 s-1 for MgATP-actin and 1.4 s-1 for MgADP-actin. Thus, profilin can increase the rate of exchange of actin-bound ADP for ATP by 140-fold. The affinity of profilin for monomeric actin is found to be similar for MgATP-actin and MgADP-actin. Continuous sonication was used to allow study of solutions having sustained high filament end concentrations. During sonication at steady state, F-actin depolymerizes toward the critical concentration of ADP-actin [Pantaloni, D., et al. (1984)J. Biol. Chem. 259, 6274-6283], our analysis indicates that under these conditions a significant number of filaments contain terminal ADP-actin subunits. Addition of profilin to this system increases the polymer concentration and increases the steady state ATPase activity during sonication. These data are explained by the fast exchange of ATP for ADP on the profilin-ADP-actin complex, resulting in rapid ATP-actin regeneration. An important function of profilin may be to provide the growing ends of filaments with ATP-actin during periods when the monomer cycling rate exceeds the intrinsic nucleotide exchange rate of monomeric actin.  相似文献   

14.
Polymerization under sonication has been developed as a new method to study the rapid polymerization of actin with a large number of elongating sites. The theory proposed assumes that filaments under sonication are maintained at a constant length by the constant input of energy. The data obtained for the reversible polymerization of ADP-actin under sonication have been successfully analyzed according to the proposed model and, therefore, validate the model. The results obtained for the polymerization of ATP-actin under sonication demonstrate the involvement of ATP hydrolysis in the polymerization process. At high actin concentration, polymerization was fast enough, as compared to ATP hydrolysis on the F-actin, to obtain completion of the reversible polymerization of ATP-actin before significant hydrolysis of ATP occurred. A critical concentration of 3 microM was determined as the ratio of the dissociation and association rate constants for the interaction of ATP-actin with the ATP filament ends in 1 mM MgCl2, 0.2 mM ATP. The plot of the rate of elongation of filaments versus actin monomer concentration exhibited an upward deviation at high actin concentration that is consistent with this result. The fact that F-actin at steady state is more stable than the ATP-F-actin polymer at equilibrium suggests that the interaction between ADP-actin and ATP-actin subunits at the end of the ATP-capped filament is much stronger than the interaction between two ATP-actin subunits.  相似文献   

15.
Phosphorylation of Amoeba G-actin and its effect on actin polymerization   总被引:6,自引:0,他引:6  
Mass culture of Amoeba proteus enabled us to do biochemical studies on this organism. Actin and profilin were purified from Amoeba to examine actin phosphorylation and polymerization. The apparent molecular weight of Amoeba actin was 44,000, and its isoelectric point was 5.8. The apparent molecular weight of Amoeba profilin was 12,000, and its isoelectric point was 4.9. It reduced the rate of actin polymerization as reported in the cases of profilins from other organisms. A protein of Mr = 44,000 (44 K protein) was phosphorylated in a Ca2+-dependent manner in cell homogenate of Amoeba without being inhibited by calmodulin antagonists. Using the homogenate as a kinase, purified Amoeba G-actin could be phosphorylated in proportion to the amount of actin. However, neither Amoeba F-actin nor rabbit skeletal muscle G-actin was phosphorylated. The phosphorylation of Amoeba actin with a kinase partially purified from A. proteus increased with dilution of the actin concentration. When Amoeba profilin was added, more than 80% of the actin was phosphorylated. By viscometry, electron microscopy, and ultracentrifugation analysis it was demonstrated that Amoeba G-actin phosphorylated in the presence of profilin and kinase did not polymerize in this solution. High-performance liquid chromatography analysis showed that phosphorylated Amoeba actin remained in a monomeric state even under conditions favorable for actin polymerization.  相似文献   

16.
Pyridoxal 5'-phosphate (PLP), a lysine-specific reagent, has been used to modify G-actin. At pH 7.5, PLP reacted with 1.7-2 lysines on G-actin. Limited proteolytic digestion experiments indicated that, in agreement with previous works, essentially lysine-61 was modified in a 1:1 fashion by PLP, other lysines being much less reactive. A PLP-derivatized affinity label of ATP binding sites, AMPPLP, reacted with two additional lysines that do not appear to be located in the ATP site on G-actin. PLP-G-actin did not polymerize spontaneously up to 30 microM; however, it retained other essential native properties of G-actin. PLP-actin bound to the barbed ends of actin filaments with an equilibrium dissociation constant of 4 microM and prevented dilution-induced depolymerization like a capping protein. PLP-actin copolymerized with unmodified actin. The stability of F-actin copolymers decreased with the fraction of PLP-actin incorporated, consistent with a model within which the actin-PLP-actin interactions in the copolymer are 50-fold weaker, and PLP-actin-PLP-actin interactions are 200-fold weaker than regular actin-actin interactions. PLP-actin bound DNase I with an equilibrium association constant of 2 nM-1, i.e., 10-fold lower than that of unmodified actin. PLP modification did not affect the binding of G-actin to myosin subfragment 1. However, polymerization of PLP-actin by myosin subfragment 1 was not observed in low ionic strength buffers, whereas PLP-F-actin-S1 filaments, in which the stoichiometry PLP-actin:S1 is 1:1, were formed with an apparent critical concentration of 4.5 microM in the presence of 0.1 M KCl.  相似文献   

17.
The rate of ATP hydrolysis in solutions of F-actin at steady state in 50 mM KC1, 0.1 mM CaC12 was inhibited by AMP and ADP. The inhibition was competitive with ATP (Km of about 600 microM) with Ki values of 9 microM for AMP and 44 microM for ADP. ATP hydrolysis was inhibited greater than 95% by 1 mM AMP. AMP had no effect on the time course of actin polymerization, ATP hydrolysis during polymerization, or the critical actin concentration. Simultaneous measurements of G-actin/F-actin subunit exchange and nucleotide exchange showed that nucleotide exchange occurred much more rapidly than subunit exchange; during the experiment over 50% of the F-actin-bound nucleotide was replaced when less than 1% of the F-actin subunits had exchanged. When AMP was present it was incorporated into the polymer, preventing incorporation of ADP from ATP in solution. F-actin with bound Mg2+ was much less sensitive to AMP than F-actin with bound Ca2+. These data provide evidence for an ATP hydrolysis cycle associated with direct exchange of F-actin-bound ADP for ATP free in solution independent of monomer-polymer end interactions. This exchange and hydrolysis of nucleotide may be enhanced when Ca2+ is bound to the F-actin protomers.  相似文献   

18.
The mechanism of profilin-promoted actin polymerization has been systematically reinvestigated. Rates of barbed-end elongation onto Spectrin.4.1.Actin seeds were measured by right angle light scattering to avoid confounding effects of pyrenyl-actin, and KINSIM was used to analyze elongation progress curves. Without thymosin-beta4, both actin and Profilin.Actin (P.A) are competent in barbed-end polymerization, and kinetic simulations yielded the same bimolecular rate constant ( approximately 10 x 10(6) M(-1) s(-1)) for actin monomer or Profilin.Actin. When measured in the absence of profilin, actin assembly curves over a 0.7-4 microM thymosin-beta4 concentration range fit a simple monomer sequestering model (1 microM K(D) for Thymosin-beta4.Actin). The corresponding constant for thymosin-beta4.pyrenyl-Actin, however, was significantly higher ( approximately 9-10 microM), suggesting that the fluorophore markedly weakens binding to thymosin-beta4. With solutions of actin (2 microM) and thymosin-beta4 (2 or 4 microM), the barbed-end assembly rate rose with increasing profilin concentration (0.7-2 microM). Actin assembly in presence of thymosin-beta4 and profilin fit a simple thermodynamic energy cycle, thereby disproving an earlier claim (D. Pantaloni and M.-F. Carlier (1993) Cell 75, 1007-1014) that profilin promotes nonequilibrium filament assembly by accelerating hydrolysis of filament-bound ATP. Our findings indicate that profilin serves as a polymerization catalyst that captures actin monomers from Thymosin-beta4.Actin and ushers actin as a Profilin.Actin complex onto growing barbed filament ends.  相似文献   

19.
A A Lal  E D Korn 《Biochemistry》1986,25(5):1154-1158
At saturating concentrations, tropomyosin inhibited the rate of spontaneous polymerization of ATP-actin and also inhibited by 40% the rates of association and dissociation of actin monomers to and from filaments. However, tropomyosin had no effect on the critical concentrations of ATP-actin or ADP-actin. The tropomyosin-troponin complex, with or without Ca2+, had a similar effect as tropomyosin alone on the rate of polymerization of ATP-actin. Although tropomyosin binds to F-actin and not to G-actin, the absence of an effect on the actin critical concentration is probably explicable in terms of the highly cooperative nature of the binding of tropomyosin to F-actin and its very low affinity for a single F-actin subunit relative to the affinity of one actin subunit for another in F-actin.  相似文献   

20.
The free actin concentration at steady state, Ac, is a variable that determines how actin regulatory proteins influence the extent of actin polymerization. We describe a novel method employing fluorescence anisotropy to directly measure Ac in any sample after the addition of a trace amount of labeled thymosin beta4 or thymosin beta4 peptide. Using this assay, we confirm earlier theoretical work on the helical polymerization of actin and confirm the effects of actin filament-stabilizing drugs and capping proteins on Ac, thereby validating the assay. We also confirm a controversial prior observation that profilin lowers the critical concentration of Mg2+-actin. A general mechanism is proposed to explain this effect, and the first quantitative dose-response curve for the effect of profilin on Ac facilitates its evaluation. This mechanism also predicts the effect of profilin on critical concentration in the presence of the limited amount of capping protein, which is the condition often found in cells, and the effect of profilin on critical concentration in cell extracts is demonstrated for the first time. Additionally, nonlinear effects of thymosin beta4 on the steady state amount of F-actin are explained by the observed changes in Ac. This assay has potential in vivo applications that complement those demonstrated in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号