首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While eutrophication remains one of the main pressures acting on freshwater ecosystems, the prevalence of anthropogenic and nature‐induced stochastic pulse perturbations is predicted to increase due to climate change. Despite all our knowledge on the effects of eutrophication and stochastic events operating in isolation, we know little about how eutrophication may affect the response and recovery of aquatic ecosystems to pulse perturbations. There are multiple ways in which eutrophication and pulse perturbations may interact to induce potentially synergic changes in the system, for instance, by increasing the amount of nutrients released after a pulse perturbation. Here, we performed a controlled press and pulse perturbation experiment using mesocosms filled with natural lake water to address how eutrophication modulates the phytoplankton response to sequential mortality pulse perturbations; and what is the combined effect of press and pulse perturbations on the resistance and resilience of the phytoplankton community. Our experiment showed that eutrophication increased the absolute scale of the chlorophyll‐a response to pulse perturbations but did not change the proportion of the response relative to its pre‐event condition (resistance). Moreover, the capacity of the community to recover from pulse perturbations was significantly affected by the cumulative effect of sequential pulse perturbations but not by eutrophication itself. By the end of the experiment, some mesocosms could not recover from pulse perturbations, irrespective of the trophic state induced by the press perturbation. While not resisting or recovering any less from pulse perturbations, phytoplankton communities from eutrophying systems showed chlorophyll‐a levels much higher than non‐eutrophying ones. This implies that the higher absolute response to stochastic pulse perturbations in a eutrophying system may increase the already significant risks for water quality (e.g., algal blooms in drinking water supplies), even if the relative scale of the response to pulse perturbations between eutrophying and non‐eutrophying systems remains the same.  相似文献   

2.
Falls during walking are a major contributor to accidental deaths and injuries that can result in debilitating hospitalization costs, lost productivity, and diminished quality of life. To reduce these losses, we must develop a more profound understanding of the characteristic responses to perturbations similar to those encountered in daily life. This study addresses this issue by building on our earlier studies that examined mechanical and visual perturbations in the same environment by applying the same continuous pseudo-random perturbations at multiple (3 mechanical, 5 visual) amplitudes. Walking variability during mechanical perturbations increased significantly with amplitude for all subjects and differences as measured by variabilities of step width, COM position, and COM velocity. These parameters were the only ones sensitive to the presence of visual perturbations, but none of them changed significantly with perturbation amplitude. Additionally, visual perturbation effects were far less consistent across participants, with several who were essentially unaffected by visual perturbations at any level. The homogeneity of the mechanical perturbation effects demonstrates that human responses to mechanical perturbations are similar because they are driven by kinetics that require similar corrections that must be made in order to maintain balance. Conversely, responses to visual perturbations are driven by the perceived need to make corrections and this perception is not accurate enough to produce amplitude-related corrections, even for a single participant, nor is this perception consistent across individuals. This latter finding is likely to be relevant to future visual perturbation studies and the diagnosis and rehabilitation of gait and balance disorders.  相似文献   

3.
In the context of dairy farming, ruminant females often face challenges inducing perturbations that affect their performance and welfare. A key issue is how to assess the effect of perturbations and provide metrics to quantify how animals cope with their environment. Milk production dynamics are good candidates to address this issue: i) they are easily accessible, ii) overall dynamics throughout lactation process are well described and iii) perturbations are visible through milk losses. In this study, a perturbed lactation model (PLM) with explicit representation of perturbations was developed. The model combines two components: i) the unperturbed lactation model that describes a theoretical lactation curve, assumed to reflect female production potential and ii) the perturbation model that describes all the deviations from the unperturbed lactation model with four parameters: starting date, intensity and shape (collapse and recovery). To illustrate the use of the PLM as a phenotyping tool, it was fitted on a data set of 319 complete lactations from 181 individual dairy goats. A total of 2 354 perturbations were detected, with an average of 7.40 perturbations per lactation. Loss of milk production for the whole lactation due to perturbations varied between 2 and 19% of the milk production predicted by the unperturbed lactation model. The number of perturbations was not the major factor explaining the loss of milk production, suggesting that there are different types of animal response to challenges. By incorporating explicit representation of perturbations in a lactation model, it was possible to determine for each female the potential milk production, characteristics of each perturbation and milk losses induced by perturbations. Further, it was possible to compare animals and analyze individual variability. The indicators produced by the PLM are likely to be useful to move from raw data to decision support tools in dairy production.  相似文献   

4.
The ensemble modeling (EM) approach has shown promise in capturing kinetic and regulatory effects in the modeling of metabolic networks. Efficacy of the EM procedure relies on the identification of model parameterizations that adequately describe all observed metabolic phenotypes upon perturbation. In this study, we propose an optimization-based algorithm for the systematic identification of genetic/enzyme perturbations to maximally reduce the number of models retained in the ensemble after each round of model screening. The key premise here is to design perturbations that will maximally scatter the predicted steady-state fluxes over the ensemble parameterizations. We demonstrate the applicability of this procedure for an Escherichia coli metabolic model of central metabolism by successively identifying single, double, and triple enzyme perturbations that cause the maximum degree of flux separation between models in the ensemble. Results revealed that optimal perturbations are not always located close to reaction(s) whose fluxes are measured, especially when multiple perturbations are considered. In addition, there appears to be a maximum number of simultaneous perturbations beyond which no appreciable increase in the divergence of flux predictions is achieved. Overall, this study provides a systematic way of optimally designing genetic perturbations for populating the ensemble of models with relevant model parameterizations.  相似文献   

5.
Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM) excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations.  相似文献   

6.
Accurate vocal production relies on several factors including sensory feedback and the ability to predict future challenges to the control processes. Repetitive patterns of perturbations in sensory feedback by themselves elicit implicit expectations in the vocal control system regarding the timing, quality and direction of perturbations. In the present study, the predictability of voice pitch-shifted auditory feedback was experimentally manipulated. A block of trials where all pitch-shift stimuli were upward, and therefore predictable was contrasted against an unpredictable block of trials in which the stimulus direction was randomized between upward and downward pitch-shifts. It was found that predictable perturbations in voice auditory feedback led to a reduction in the proportion of compensatory vocal responses, which might be indicative of a reduction in vocal control. The predictable perturbations also led to a reduction in the magnitude of the N1 component of cortical Event Related Potentials (ERP) that was associated with the reflexive compensations to the perturbations. We hypothesize that formation of expectancy in our study is accompanied by involuntary allocation of attentional resources occurring as a result of habituation or learning, that in turn trigger limited and controlled exploration-related motor variability in the vocal control system.  相似文献   

7.
We studied the role of different leg and trunk muscle groups in the generation of anticipatory postural adjustments (APAs) prior to lateral and rotational perturbations associated with predictable and self-triggered postural perturbations during standing. Postural perturbations were induced by a variety of manipulations including catching and releasing a load with the right hand extended either in front of the body or to the right side, performing bilateral fast shoulder movements in different directions, and applying brief force pulses with a hand against the wall. Perturbations in a frontal plane ("lateral perturbations") were associated with significant asymmetries in APAs seen in the right and left distal (soleus and tibialis anterior) muscles; these asymmetries dependent on the direction of the perturbation. Rotational perturbations about the vertical axis of the body generated by fast movements of the two shoulders in the opposite directions were also associated with direction-dependent asymmetries in the APAs in soleus muscles. However, rotational perturbations generated by an off-body-midline force pulse application were accompanied by direction-dependent asymmetries in proximal muscle groups, but not in the distal muscles. We conclude that muscles controlling the ankle joint play an important role in the compensation of lateral and rotational perturbations. The abundance of muscles participating in maintaining vertical posture allows the control system to use different task-dependent strategies during the generation of APAs in anticipation of rotational perturbation.  相似文献   

8.
There are numerous diseases associated with abnormal hormonal regulation and these include cancers of the breast and prostate. There is substantial evidence that early hormonal perturbations (in utero or during early development) are associated with increased disease susceptibility later in life. These perturbations may arise from exposure to environmental agents or endocrine disruptors which mimic hormones and disrupt normal hormonal signaling. Epigenetic alterations have often been proposed as the underlying mechanism by which early hormonal perturbations may give rise to disease in adulthood. Currently, there is minimal evidence to support a direct link between early hormonal perturbations and epigenetic modifications; or between epigenetic alterations and subsequent onset of cancer. Given that epigenetic modifications may play an important role in hormone-dependent cancers, it is essential to better understand the relationship between the hormonal environment and epigenetic modifications in both normal and disease states. In this review, we highlight several important studies which support the hypothesis that: hormonal perturbations early in life may result in epigenetic changes that may modify hormone receptor function, thereby contributing to an increased risk of developing hormone-related cancers.  相似文献   

9.
张彬  刘满强  钱刘兵  梁山峰 《生态学报》2023,43(14):5674-5685
人类活动的不断加剧使得土壤生态系统承受着环境干扰压力。土壤微生物受到环境干扰的响应程度(抵抗力)及恢复至原来状态的能力(恢复力)决定着土壤生态系统的可持续性。梳理和总结了土壤微生物群落对环境干扰的抵抗力和恢复力方面的研究进展。首先,在介绍土壤微生物群落抵抗力和恢复力概念的基础上,阐述了通过评估微生物群落的结构和功能的变化来系统表征抵抗力和恢复力;随后,分析了最近十年(2012-2021年)有关文献,发现土壤微生物群落的结构和(或)功能在环境干扰后的恢复力总体较弱,但耕作、有机物料添加和轮作等农田管理措施下的响应趋势表现出一定的规律性;继而,从个体水平的休眠和胁迫忍耐、种群水平的生存策略、群落水平的多样性和相互作用以及生态系统水平的历史遗留效应等方面分析了土壤微生物群落抵抗力和恢复力的维持机制;最后,从功能性状、多功能性和植物-土壤微生物整体性对未来研究做出了展望,以期为构建土壤健康评价体系及预测环境干扰对土壤功能的影响提供科学依据。  相似文献   

10.
We used small perturbations in adult numbers to control large fluctuations in the chaotic demographic dynamics of laboratory populations of the flour beetle Tribolium castaneum . A nonlinear mathematical model was used to identify a sensitive region of phase space where the addition of a few adult insects would result in a dampening of the life stage fluctuations. Three experimental treatments were applied: one in which perturbations were made whenever the populations were inside the sensitive region ("in-box treatment"), another where perturbations were made whenever the populations were outside the sensitive region ("out-box treatment"), and an unperturbed control. The in-box treatment caused a stabilization of insect densities at numbers well below the peak values exhibited by the out-box and control populations. This study demonstrates how small perturbations can be used to influence the chaotic dynamics of an ecological system.  相似文献   

11.
A large body of experimental and theoretical work on neural coding suggests that the information stored in brain circuits is represented by time-varying patterns of neural activity. Reservoir computing, where the activity of a recurrently connected pool of neurons is read by one or more units that provide an output response, successfully exploits this type of neural activity. However, the question of system robustness to small structural perturbations, such as failing neurons and synapses, has been largely overlooked. This contrasts with well-studied dynamical perturbations that lead to divergent network activity in the presence of chaos, as is the case for many reservoir networks. Here, we distinguish between two types of structural network perturbations, namely local (e.g., individual synaptic or neuronal failure) and global (e.g., network-wide fluctuations). Surprisingly, we show that while global perturbations have a limited impact on the ability of reservoir models to perform various tasks, local perturbations can produce drastic effects. To address this limitation, we introduce a new architecture where the reservoir is driven by a layer of oscillators that generate stable and repeatable trajectories. This model outperforms previous implementations while being resistant to relatively large local and global perturbations. This finding has implications for the design of reservoir models that capture the capacity of brain circuits to perform cognitively and behaviorally relevant tasks while remaining robust to various forms of perturbations. Further, our work proposes a novel role for neuronal oscillations found in cortical circuits, where they may serve as a collection of inputs from which a network can robustly generate complex dynamics and implement rich computations.  相似文献   

12.
The stability of periodic flows and helicon waves against large-scale perturbations is investigated analytically in resistive electron magnetohydrodynamics by the method of two-scale expansions. It is shown that long-wavelength perturbations of a Kolmogorov-type flow are destabilized by the effect of negative resistivity. The destabilization of long-wavelength perturbations of a Beltrami-type helical flow and helicon waves is related to the microhelicity of the primary flow (wave). The instability of long-wavelength perturbations of an anisotropic helical flow is found to result from both the effect of negative resistivity and the effect associated with the microhelical nature of the flow. The criteria for the onset of the corresponding instabilities are derived. Numerical simulations are carried out based on nonlinear electron magnetohydrodynamic equations with initial conditions corresponding to the analytic formulation of the problem. The results of simulations on the whole confirm analytical results in the parameter range in which the latter are applicable and, in addition, extend the stability analysis to the parameter ranges that are beyond the scope of analytic approximations.  相似文献   

13.
Anticipatory (APAs) and compensatory (CPAs) postural adjustments are the two principal mechanisms that the central nervous system uses to maintain equilibrium while standing. We studied the role of APAs in compensatory postural adjustments. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level, while standing with eyes open and closed. Electrical activity of leg and trunk muscles was recorded and analyzed during four epochs representing the time duration typical for anticipatory and compensatory postural control. No anticipatory activity of the trunk and leg muscles was seen in the case of unpredictable perturbations; instead, significant compensatory activation of muscles was observed. When the perturbations were predictable, strong anticipatory activation was seen in all the muscles: such APAs were associated with significantly smaller compensatory activity of muscles and COP displacements after the perturbations.The outcome of the study highlights the importance of APAs in control of posture and points out the existence of a relationship between the anticipatory and the compensatory components of postural control. It also suggests a possibility to enhance balance control by improving the APAs responses during external perturbations.  相似文献   

14.
The present study scrutinizes the popular view that tremors of central origin but not those of peripheral origin are largely resistant to mechanical perturbations. We explore the effects of perturbations in a well-established model of peripheral tremor and document that (a) tremor frequency can remain unchanged when spring or weight loads are added, (b) entrainment by external drives can be limited to drives of similar frequency, and (c) resetting of tremor phase by torque pulses can remain fractional. This resistance to mechanical perturbations arises in the model because peripheral neuromuscular dynamics act as a limit-cycle oscillator which, by its very nature, will absorb moderate changes to signals and parameters. We conclude from our study that resistance to mechanical perturbations is not an exclusive property of central tremors, but rather may also be found in peripheral tremors. Other criteria are therefore needed to distinguish between different origins of tremor. Received: 8 April 1998 / Accepted in revised form: 6 October 1998  相似文献   

15.
Algebraic derivations and numerical examples illustrate how metabolite pool sizes and enzyme rate constants influence the rate at which a multireactant enzyme system, initially poised in a near-equilibrium steady state, responds to small perturbations in the concentrations of the reactants. Certain enzymes, such as those employing the ordered bi bi catalytic mechanism, become relatively insensitive to perturbations when the reactants are all present at high concentrations. Other enzymes, such as those employing the ping-pong bi bi mechanism, are most sensitive to perturbations at high reactant concentrations. The ratio of the reactant concentrations to one another significantly alters sensitivity to perturbations; equations are presented for calculation of the reactant concentrations yielding maximal sensitivity to perturbations. Natural selection could choose metabolite pool sizes and enzyme rate constants which would optimize the performance of these systems, but changing metabolic loads (naturally or experimentally imposed) constantly alter the sensitivity of these systems to perturbations, changing the relative strengths of various connections in metabolic control networks.  相似文献   

16.
External perturbations applied to the walking surface or visual field can challenge an individual's ability to maintain stability during walking. Accurately quantifying and predicting changes in stability during walking will further our understanding of how individuals respond to challenges encountered during daily life and guide the development of assessments and rehabilitation interventions for individuals at increased risk of falling. This study is the first to determine how orbital and local dynamic stability metrics, including maximum Floquet multipliers and local divergence exponents, change in response to continuous mediolateral visual and surface perturbations of different amplitudes. Eleven healthy individuals walked in a fully immersive virtual environment. Participants completed two 3-min walking trials each under the following nine conditions: no perturbations, surface perturbations at each of 3 amplitudes, and visual perturbations at each of 5 amplitudes. All perturbations were applied as continuous pseudo-random oscillations. During both surface and visual perturbations, individuals were significantly more orbitally and locally unstable compared to un-perturbed walking. As walking surface perturbation amplitudes increased, individuals were more orbitally (but not locally) unstable. As visual perturbation amplitudes increased, individuals were more locally (but not orbitally) unstable between lower and higher amplitudes. Overall, these dynamic stability metrics were much less sensitive to changes in perturbation amplitudes than to differences between un-perturbed and perturbed walking, or to differences between mechanical and visual perturbations. This suggests that the type of perturbation(s) applied has a far greater impact than the magnitude of those perturbations in determining the response that will be elicited.  相似文献   

17.
Global change threatens the maintenance of ecosystem functions that are shaped by the persistence and dynamics of populations. It has been shown that the persistence of species increases if they possess larger trait adaptability. Here, we investigate whether trait adaptability also affects the robustness of population dynamics of interacting species and thereby shapes the reliability of ecosystem functions that are driven by these dynamics. We model co‐adaptation in a predator–prey system as changes to predator offense and prey defense due to evolution or phenotypic plasticity. We investigate how trait adaptation affects the robustness of population dynamics against press perturbations to environmental parameters and against pulse perturbations targeting species abundances and their trait values. Robustness of population dynamics is characterized by resilience, elasticity, and resistance. In addition to employing established measures for resilience and elasticity against pulse perturbations (extinction probability and return time), we propose the warping distance as a new measure for resistance against press perturbations, which compares the shapes and amplitudes of pre‐ and post‐perturbation population dynamics. As expected, we find that the robustness of population dynamics depends on the speed of adaptation, but in nontrivial ways. Elasticity increases with speed of adaptation as the system returns more rapidly to the pre‐perturbation state. Resilience, in turn, is enhanced by intermediate speeds of adaptation, as here trait adaptation dampens biomass oscillations. The resistance of population dynamics strongly depends on the target of the press perturbation, preventing a simple relationship with the adaptation speed. In general, we find that low robustness often coincides with high amplitudes of population dynamics. Hence, amplitudes may indicate the robustness against perturbations also in other natural systems with similar dynamics. Our findings show that besides counteracting extinctions, trait adaptation indeed strongly affects the robustness of population dynamics against press and pulse perturbations.  相似文献   

18.
Dynamic perturbations of reaching movements are an important technique for studying motor learning and adaptation. Adaptation to non-contacting, velocity-dependent inertial Coriolis forces generated by arm movements during passive body rotation is very rapid, and when complete the Coriolis forces are no longer sensed. Adaptation to velocity-dependent forces delivered by a robotic manipulandum takes longer and the perturbations continue to be perceived even when adaptation is complete. These differences reflect adaptive self-calibration of motor control versus learning the behavior of an external object or 'tool'. Velocity-dependent inertial Coriolis forces also arise in everyday behavior during voluntary turn and reach movements but because of anticipatory feedforward motor compensations do not affect movement accuracy despite being larger than the velocity-dependent forces typically used in experimental studies. Progress has been made in understanding: the common features that determine adaptive responses to velocity-dependent perturbations of jaw and limb movements; the transfer of adaptation to mechanical perturbations across different contact sites on a limb; and the parcellation and separate representation of the static and dynamic components of multiforce perturbations.  相似文献   

19.
A novel graywater treatment system consisting of an aerated batch reactor and biomass-retaining ultrafiltration unit was evaluated for treatment of shipboard wastes. The focus of this study was to determine the resilience of the biomass recycle reactor to perturbations of sodium hypochlorite, the major component of bleach. A bench-scale reactor was perturbed with 50, 190, and 1000 mg L−1 sodium hypochlorite and monitored for changes in respiration, substrate utilization, viable plate counts, fatty acid methyl ester profiles, and Biolog-GN patterns. Following the addition of hypochlorite, respiration and substrate utilization were not detected, and viable biomass decreased. Recovery times following perturbations were longer with higher concentrations of sodium hypochlorite. Community composition (determined by fatty acid methyl ester analysis) changed during the recovery from hypochlorite perturbations. However, more significant differences in community composition were noted between different perturbations and were a function of time. Irrespective of initial community composition, the reactor communities recovered from hypochlorite perturbations. Biolog patterns showed no notable change in the overall metabolic capacity of the community. The biomass recycle reactor’s resistance to sodium hypochlorite perturbations contributes to its usefulness in treatment of shipboard wastes. Journal of Industrial Microbiology & Biotechnology (2000) 24, 191–197. Received 28 July 1999/ Accepted in revised form 03 December 1999  相似文献   

20.
Appropriately responding to mechanical perturbations during gait is critical to maintain balance and avoid falls. Tripping perturbation onset during swing phase is strongly related to the use of different recovery strategies; however, it is insufficient to fully explain how strategies are chosen. The dynamic interactions between the foot and the obstacle may further explain observed recovery strategies but the relationship between such contextual elements and strategy selection has not been explored. In this study, we investigated whether perturbation onset, duration and side could explain strategy selection for all of swing phase. We hypothesized that perturbations of longer duration would elicit lowering and delayed-lowering strategies earlier in swing phase than shorter perturbations. We developed a custom device to trip subjects multiple times while they walked on a treadmill. Seven young, healthy subjects were tripped on the left or right side at 10% to 80% of swing phase for 150 ms, 250 ms or 350 ms. Strategies were characterized by foot motion post-perturbation and identified by an automated algorithm. A multinomial logistic model was used to investigate the effect of perturbation onset, side, and the interaction between duration and onset on recovery strategy selection. Side perturbed did not affect strategy selection. Perturbation duration interacted with onset, limiting the use of elevating strategies to earlier in swing phase with longer perturbations. The choice between delayed-lowering and lowering strategies was not affected by perturbation duration. Although these variables did not fully explain strategy selection, they improved the prediction of strategy used in response to tripping perturbations throughout swing phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号