首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This laboratory has established in previous studies that Pmel 17, a gene expressed specifically in melanocytes, maps near the silver coat color locus (si/si) on mouse chromosome 10. In the current study, we have focused on determining whether or not the si allele carries a mutation in Pmel 17. Pmel 17 cDNA clones, isolated from wild-type and si/si murine melanocyte cDNA libraries, were sequenced and compared. A single nucleotide (A) insertion was found in the putative cytoplasmic tail of the si/si Pmel 17 cDNA clone. This insertion is predicted to alter the last 24 amino acids at the C-terminus. Also predicted is the extension of the Pmel 17 protein by 12 residues because a new termination signal created downstream from the wild-type reading frame. The mutation was confirmed by the sequence of the PCR-amplified genomic region flanking and including the mutation site. The fact that si/si Pmel 17 was not recognized by antibodies directed toward the C-terminal 15 amino acids of wild-type Pmel 17, indicated a defect in this region. We conclude from these results that silver pmel 17 protein has a major defect at the carboxyl terminus. The chromosomal location and the identification of a potentially pathologic mutation in si-Pmel 17 support our conclusion that Pmel 17 is encoded at the silver locus.  相似文献   

2.
Melanosomes and premelanosomes are lysosome-related organelles with a unique structure and cohort of resident proteins. We have positioned these organelles relative to endosomes and lysosomes in pigmented melanoma cells and melanocytes. Melanosome resident proteins Pmel17 and TRP1 localized to separate vesicular structures that were distinct from those enriched in lysosomal proteins. In immunogold-labeled ultrathin cryosections, Pmel17 was most enriched along the intralumenal striations of premelanosomes. Increased pigmentation was accompanied by a decrease in Pmel17 and by an increase in TRP1 in the limiting membrane. Both proteins were largely excluded from lysosomal compartments enriched in LAMP1 and cathepsin D. By kinetic analysis of fluid phase uptake and immunogold labeling, premelanosomal proteins segregated from endocytic markers within an unusual endosomal compartment. This compartment contained Pmel17, was accessed by BSA-gold after 15 min, was acidic, and displayed a cytoplasmic planar coat that contained clathrin. Our results indicate that premelanosomes and melanosomes represent a distinct lineage of organelles, separable from conventional endosomes and lysosomes within pigmented cells. Furthermore, they implicate an unusual clathrin-coated endosomal compartment as a site from which proteins destined for premelanosomes and lysosomes are sorted.  相似文献   

3.
The melanosome, an organelle specialized for melanin synthesis, is one of the lysosome-related organelles. Its lumen is reported to be acidified by vacuolar-type H+-ATPase (V-ATPase). Mammalian V-ATPase exhibits structural diversity in its subunit isoforms; with regard to membrane intrinsic subunit a, four isoforms (a1–a4) have been found to be localized to distinct subcellular compartments. In this study, we have shown that the a3 isoform is co-localized with a melanosome marker protein, Pmel17, in mouse melanocytes. Acidotropic probes (LysoSensor and DAMP) accumulate in non-pigmented Pmel17-positive melanosomes, and DAMP accumulation is sensitive to bafilomycin A1, a specific inhibitor of V-ATPase. However, none of the subunit a isoforms is associated with highly pigmented mature melanosomes, in which the acidotropic probes are also not accumulated. oc/oc mice, which have a null mutation at the a3 locus, show no obvious defects in melanogenesis. In the mutant melanocytes, the expression of the a2 isoform is modestly elevated, and a considerable fraction of this isoform is localized to premature melanosomes. These observations suggest that the V-ATPase keeps the lumen of premature melanosomes acidic, whereas melanosomal acidification is less significant in mature melanosomes. Ge-Hong Sun-Wada and Yoh Wada contributed equally to this study. This study was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and by the Hayashi and Noda Foundations.  相似文献   

4.
Pmel17 is a melanocyte/melanoma-specific protein that traffics to melanosomes where it forms a fibrillar matrix on which melanin gets deposited. Before being cleaved into smaller fibrillogenic fragments the protein undergoes processing by proprotein convertases, a class of serine proteases that typically recognize the canonical motif RX(R/K)R↓. The current model of Pmel17 maturation states that this processing step occurs in melanosomes, but in light of recent reports this issue has become controversial. We therefore addressed this question by thoroughly assessing the processing kinetics of either wild-type Pmel17 or a secreted soluble Pmel17 derivative. Our results demonstrate clearly that processing of Pmel17 occurs during secretion and that it does not require entry of the protein into the endocytic system. Strikingly, processing proceeds even in the presence of the secretion inhibitor monensin, suggesting that Pmel17 is an exceptionally good substrate. In line with this, we find that newly synthesized surface Pmel17 is already quantitatively cleaved. Moreover, we demonstrate that Pmel17 function is independent of the sequence identity of its unconventional proprotein convertase-cleavage motif that lacks arginine in P4 position. The data alter the current view of Pmel17 maturation and suggest that the multistep processing of Pmel17 begins with an early cleavage during secretion that primes the protein for later functional processing.  相似文献   

5.
Cargo partitioning into intralumenal vesicles (ILVs) of multivesicular endosomes underlies such cellular processes as receptor downregulation, viral budding, and biogenesis of lysosome-related organelles such as melanosomes. We show that the melanosomal protein Pmel17 is sorted into ILVs by a mechanism that is dependent upon lumenal determinants and conserved in non-pigment cells. Pmel17 targeting to ILVs does not require its native cytoplasmic domain or cytoplasmic residues targeted by ubiquitylation and, unlike sorting of ubiquitylated cargo, is insensitive to functional inhibition of Hrs and ESCRT complexes. Chimeric protein and deletion analyses indicate that two N-terminal lumenal subdomains are necessary and sufficient for ILV targeting. Pmel17 fibril formation, which occurs during melanosome maturation in melanocytes, requires a third lumenal subdomain and proteolytic processing that itself requires ILV localization. These results establish an Hrs- and perhaps ESCRT-independent pathway of ILV sorting by lumenal determinants and a requirement for ILV sorting in fibril formation.  相似文献   

6.
Pmel17 is a melanocyte/melanoma-specific protein that is essential for the maturation of melanosomes to form mature, fibrillar, and pigmented organelles. Recently, we reported that the less glycosylated form of Pmel17 (termed iPmel17) is sorted via the plasma membrane in a manner distinct from mature Pmel17 (termed mPmel17), which is sorted directly to melanosomes. To clarify the mechanism(s) underlying the distinct processing and sorting of Pmel17, we generated a highly specific antibody (termed alphaPEP25h) against an epitope within the repeat domain of Pmel17 that is sensitive to changes in O-glycosylation. alphaPEP25h recognizes only iPmel17 and allows analysis of the processing and sorting of iPmel17 when compared with alphaPEP13h, an antibody that recognizes both iPmel17 and mPmel17. Our novel findings using alphaPEP25h demonstrate that iPmel17 differs from mPmel17 not only in its sensitivity to endoglycosidase H, but also in the content of core 1 O-glycans modified with sialic acid. This evidence reveals that iPmel17 is glycosylated differently in the Golgi and that it is sorted through the secretory pathway. Analysis of Pmel17 processing in glycosylation-deficient mutant cells reveals that Pmel17 lacking the correct addition of sialic acid and galactose loses the ability to form fibrils. Furthermore, we show that addition of sialic acid affects the stability and sorting of Pmel17 and reduces pigmentation. Alterations in sialyltransferase activity and substrates differ between normal and transformed melanocytes and may represent a critical change during malignant transformation.  相似文献   

7.
Melanin pigments are synthesized within specialized organelles called melanosomes and polymerize on intraluminal fibrils that form within melanosome precursors. The fibrils consist of proteolytic fragments derived from Pmel17, a pigment cell-specific integral membrane protein. The intracellular pathways by which Pmel17 accesses melanosome precursors and the identity of the Pmel17 derivatives within fibrillar melanosomes have been a matter of debate. We show here that antibodies that detect Pmel17 within fibrillar melanosomes recognize only the luminal products of proprotein convertase cleavage and not the remaining products linked to the transmembrane domain. Moreover, antibodies to the N and C termini detect only Pmel17 isoforms present in early biosynthetic compartments, which constitute a large fraction of detectable steady state Pmel17 in cell lysates because of slow early biosynthetic transport and rapid consumption by fibril formation. Using an antibody to a luminal epitope that is destroyed upon modification by O-linked oligosaccharides, we show that all post-endoplasmic reticulum Pmel17 isoforms are modified by Golgi-associated oligosaccharide transferases, and that only processed forms contribute to melanosome biogenesis. These data indicate that Pmel17 follows a single biosynthetic route from the endoplasmic reticulum through the Golgi complex and endosomes to melanosomes, and that only fragments encompassing previously described functional luminal determinants are present within the fibrils. These data have important implications for the site and mechanism of fibril formation.  相似文献   

8.
9.
Pmel 17 cDNA clones, isolated from wild-type and si/si murine melanocytes, were sequenced and compared. A single nucleotide (A) insertion was found in the putative cytoplasmic tail of the si/si Pmel 17 cDNA clone. This insertion is predicted to alter the last 24 amino acids at the C-terminus and to extend the Pmel 17 protein by 12 residues. The mutation was confirmed by the sequence of the PCR-amplified genomic region including the mutation site. Silver Pmel 17 was not recognized by antibodies directed toward the C-terminal amino acids of wild-type Pmel 17, indicating a defect in this region. These results indicate that silver Pmel 17 protein has a major defect at the carboxyl terminus.  相似文献   

10.
The slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase in melanocytes and to reduce the melanin content in skin, hairs and eyes. Although the melanosomes in slaty melanocytes are reported to be eumelanosome-like, detailed melanosome biogenesis is not well studied. To address this point, melanosomes in neonatal epidermal melanocytes from wild-type (Dct+/Dct+) mice at the slaty locus as well as its congenic mouse mutant (Dct(slt)/Dct(slt)) in serum-free primary culture were observed under the electron microscope. Wild-type melanocytes possessed exclusively elliptical melanosomes with internal longitudinal structures, whereas in mutant melanocytes, numerous spherical melanosomes with globular depositions of pigment and elliptical melanosomes as well as mixed type of the two melanosomes were observed. Mature stage IV melanosomes were greatly decreased in mutant melanocytes, whereas immature stage III melanosomes were more numerous than in wild-type melanocytes. These results suggest that the slaty mutation affects the morphology and maturation of melanosomes in mouse melanocytes.  相似文献   

11.
Melanocytes synthesize and store melanin within tissue-specific organelles, the melanosomes. Melanin deposition takes place along fibrils found within these organelles and fibril formation is known to depend on trafficking of the membrane glycoprotein Silver/Pmel17. However, correctly targeted, full-length Silver/Pmel17 cannot form fibers. Proteolytic processing in endosomal compartments and the generation of a lumenal Mα fragment that is incorporated into amyloid-like structures is also essential. Dominant White (DWhite), a mutant form of Silver/Pmel17 first described in chicken, causes disorganized fibers and severe hypopigmentation due to melanocyte death. Surprisingly, the DWhite mutation is an insertion of three amino acids into the transmembrane domain; the DWhite-Mα fragment is unaffected. To determine the functional importance of the transmembrane domain in organized fibril assembly, we investigated membrane trafficking and multimerization of Silver/Pmel17/DWhite proteins. We demonstrate that the DWhite mutation changes lipid interactions and disulfide bond-mediated associations of lumenal domains. Thus, partitioning into membrane microdomains and effects on conformation explain how the transmembrane region may contribute to the structural integrity of Silver/Pmel17 oligomers or influence toxic, amyloidogenic properties.  相似文献   

12.
13.
Most amyloids are pathological, but fragments of Pmel17 form a functional amyloid in vertebrate melanosomes essential for melanin synthesis and deposition. We previously reported that only at the mildly acidic pH (4-5.5) typical of melanosomes, the repeat domain (RPT) of human Pmel17 can form amyloid in vitro. Combined with the known presence of RPT in the melanosome filaments and the requirement of this domain for filament formation, we proposed that RPT may be the core of the amyloid formed in vivo. Although most of Pmel17 is highly conserved across a broad range of vertebrates, the RPT domains vary dramatically, with no apparent homology in some cases. Here, we report that the RPT domains of mouse and zebrafish, as well as a small splice variant of human Pmel17, all form amyloid specifically at mildly acid pH (pH ~5.0). Protease digestion, mass per unit length measurements, and solid-state NMR experiments suggest that amyloid of the mouse RPT has an in-register parallel β-sheet architecture with two RPT molecules per layer, similar to amyloid of the Aβ peptide. Although there is no sequence conservation between human and zebrafish RPT, amyloid formation at acid pH is conserved.  相似文献   

14.
Melanosomes, specific organelles produced only by melanocytes, undergo a unique maturation process that involves their transition form amorphous rounded vesicles to fibrillar ellipsoid organelles, during which they move from the perinuclear to the distal areas of the cells. This depends upon the trafficking and processing of gp100 (also known as Pmel17 and the silver protein), a protein of great interest, because it elicits immune responses in melanoma patients but in which specific function(s) remains elusive. In this study, we have used biochemical and immunochemical approaches to more critically assess the synthesis, processing, glycosylation, and trafficking of gp100. We now report that gp100 is processed and sorted in a manner distinct from other melanosomal proteins (such as tyrosinase, Tyrp1 and Dct) and is predominantly delivered directly to immature melanosomes following its rapid processing in the endoplasmic reticulum and cis-Golgi. Following its arrival, gp100 is cleaved at the amino and at the carboxyl termini in a series of specific steps that result in the reorganization of immature melanosomes to the fibrillar mature melanosomes. Once this structural reorganization occurs, melanogenic enzymes begin to be targeted to the melanosomes, which are then competent to synthesize melanin pigment.  相似文献   

15.
Melanoma antigen recognized by T cells 1 (MART-1) is a melanoma-specific antigen, which has been thoroughly studied in the context of immunotherapy against malignant melanoma and which is found only in the pigment cell lineage. However, its exact function and involvement in pigmentation is not clearly understood. Melanoma antigen recognized by T cells 1 has been shown to interact with the melanosomal proteins Pmel17 and OA1. To understand the function of MART-1 in pigmentation, we developed a new knockout mouse model. Mice deficient in MART-1 are viable, but loss of MART-1 leads to a coat color phenotype, with a reduction in total melanin content of the skin and hair. Lack of MART-1 did not affect localization of melanocyte-specific proteins nor maturation of Pmel17. Melanosomes of hair follicle melanocytes in MART-1 knockout mice displayed morphological abnormalities, which were exclusive to stage III and IV melanosomes. In conclusion, our results suggest that MART-1 is a pigmentation gene that is required for melanosome biogenesis and/or maintenance.  相似文献   

16.
Rab27a regulates the peripheral distribution of melanosomes in melanocytes   总被引:24,自引:0,他引:24  
Rab GTPases are regulators of intracellular membrane traffic. We report a possible function of Rab27a, a protein implicated in several diseases, including Griscelli syndrome, choroideremia, and the Hermansky-Pudlak syndrome mouse model, gunmetal. We studied endogenous Rab27a and overexpressed enhanced GFP-Rab27a fusion protein in several cultured melanocyte and melanoma-derived cell lines. In pigmented cells, we observed that Rab27a decorates melanosomes, whereas in nonpigmented cells Rab27a colocalizes with melanosome-resident proteins. When dominant interfering Rab27a mutants were expressed in pigmented cells, we observed a redistribution of pigment granules with perinuclear clustering. This phenotype is similar to that observed by others in melanocytes derived from the ashen and dilute mutant mice, which bear mutations in the Rab27a and MyoVa loci, respectively. We also found that myosinVa coimmunoprecipitates with Rab27a in extracts from melanocytes and that both Rab27a and myosinVa colocalize on the cytoplasmic face of peripheral melanosomes in wild-type melanocytes. However, the amount of myosinVa in melanosomes from Rab27a-deficient ashen melanocytes is greatly reduced. These results, together with recent data implicating myosinVa in the peripheral capture of melanosomes, suggest that Rab27a is necessary for the recruitment of myosinVa, so allowing the peripheral retention of melanosomes in melanocytes.  相似文献   

17.
BACKGROUND: Fish melanocytes aggregate or disperse their melanosomes in response to the level of intracellular cAMP. The role of cAMP is to regulate both melanosome travel along microtubules and their transfer between microtubules and actin. The factors that are downstream of cAMP and that directly modulate the motors responsible for melanosome transport are not known. To identify these factors, we are characterizing melanosome transport mutants in zebrafish. RESULTS: We report that a mutation (allele j120) in the gene encoding zebrafish melanophilin (Mlpha) interferes with melanosome dispersion downstream of cAMP. Based on mouse genetics, the current model of melanophilin function is that melanophilin links myosin V to melanosomes. The residues responsible for this function are conserved in the zebrafish ortholog. However, if linking myosin V to melanosomes was Mlpha's sole function, elevated cAMP would cause mlpha(j120) mutant melanocytes to hyperdisperse their melanosomes. Yet this is not what we observe. Instead, mutant melanocytes disperse their melanosomes much more slowly than normal and less than halfway to the cell margin. This defect is caused by a failure to suppress minus-end (dynein) motility along microtubules, as shown by tracking individual melanosomes. Disrupting the actin cytoskeleton, which causes wild-type melanocytes to hyperdisperse their melanosomes, does not affect dispersion in mutant melanocytes. Therefore, Mlpha regulates dynein independently of its putative linkage to myosin V. CONCLUSIONS: We propose that cAMP-induced melanosome dispersion depends on the actin-independent suppression of dynein by Mlpha and that Mlpha coordinates the early outward movement of melanosomes along microtubules and their later transfer to actin filaments.  相似文献   

18.
Oculocutaneous albinism type 2 is caused by defects in the gene OCA2, encoding a pigment cell-specific, 12-transmembrane domain protein with homology to ion permeases. The function of the OCA2 protein remains unknown, and its subcellular localization is under debate. Here, we show that endogenous OCA2 in melanocytic cells rapidly exits the endoplasmic reticulum (ER) and thus does not behave as a resident ER protein. Consistently, exogenously expressed OCA2 localizes within melanocytes to melanosomes, and, like other melanosomal proteins, localizes to lysosomes when expressed in nonpigment cells. Mutagenized OCA2 transgenes stimulate melanin synthesis in OCA2-deficient cells when localized to melanosomes but not when specifically retained in the ER, contradicting a proposed primary function for OCA2 in the ER. Steady-state melanosomal localization requires a conserved consensus acidic dileucine-based sorting motif within the cytoplasmic N-terminal region of OCA2. A second dileucine signal within this region confers steady-state lysosomal localization in melanocytes, suggesting that OCA2 might traverse multiple sequential or parallel trafficking routes. The two dileucine signals physically interact in a differential manner with cytoplasmic adaptors known to function in trafficking other proteins to melanosomes. We conclude that OCA2 is targeted to and functions within melanosomes but that residence within melanosomes may be regulated by secondary or alternative targeting to lysosomes.  相似文献   

19.
《Journal of molecular biology》2014,426(24):4074-4086
Pmel17 is an important protein for pigmentation in human skin and eyes. Proteolytic fragments from Pmel17 form fibrils upon which melanin is deposited in melanosomes. The repeat domain (RPT) derived from Pmel17 only forms fibrils under acidic melanosomal conditions. Here, we examined the effects of lipids on RPT aggregation to explore whether intramelanosomal vesicles can facilitate fibrillogenesis. Using transmission electron microscopy, circular dichroism, and fluorescence spectroscopy, we monitored fibril formation at the ultrastructural, secondary conformational, and local levels, respectively. Phospholipid vesicles and lysophospholipid (lysolipid) micelles were employed as membrane mimics. The surfactant-like lysolipids are particularly pertinent due to their high content in melanosomal membranes. Interestingly, RPT aggregation kinetics were influenced only by lysolipid-containing phospholipid vesicles. While both vesicles containing either anionic lysophosphatidylglycerol (LPG) or zwitterionic lysophosphatidylcholine (LPC) stimulate aggregation, LPG exerted a greater effect on reducing the apparent nucleation time. A detailed comparison showed distinct behaviors of LPG versus LPC monomers and micelles plausibly originating from their headgroup hydrogen bonding capabilities. Acceleration and retardation of aggregation were observed for LPG monomers and micelles, respectively. Because a specific interaction between LPG and RPT was identified by intrinsic W423 fluorescence and induced α-helical structure, it is inferred that binding of LPG near the C-terminal amyloid core initiates intermolecular association, whereas stabilization of α-helical conformation inhibits β-sheet formation. Contrastingly, LPC promotes RPT aggregation at both submicellar and micellar concentrations via non-specific binding with undetectable secondary structural change. Our findings suggest that protein–lysolipid interactions within melanosomes may regulate amyloid formation in vivo.  相似文献   

20.
Transport of proteins via the secretory pathway is controlled by a combination of signal dependent cargo selection as well as unspecific bulk flow of membranes and aqueous lumen. Using the plant vacuolar sorting receptor as model for membrane spanning proteins, we have distinguished bulk flow from signal mediated protein targeting in biosynthetic and endocytic transport routes and investigated the influence of transmembrane domain length. More specifically, long transmembrane domains seem to prevent ER retention, either by stimulating export or preventing recycling from post ER compartments. Long transmembrane domains also seem to prevent endocytic bulk flow from the plasma membrane, but the presence of specific endocytosis signals overrules this in a dominant manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号