首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Isoelectric focusing revealed three enolase isoforms in pig brain, which were designated as αα- (pI = 6.5), αγ- (pI = 5.6), and γγ-enolase (pI = 5.2). The pI of purified γγ-enolase was also 5.2. The γγ-enolase isoform of enolase was purified from pig brain by a purification protocol involving heating to 55°C for 3 min, acetone precipitation, ammonium sulfate precipitation (40%–80%), DEAE Sephadex ion-exchange chromatography (pH 6.2), and Sephadex G200 gel filtration. The final specific activity was 82 units/mg protein. As with other vertebrate enolases, γγ-enolase from pig proved to be a dimer with a native mass of 85 kDa and a subunit mass of 45 kDa. The pH optimum for the reaction in the glycolytic direction is 7.2. The K m values for 2-PGA, PEP, and Mg2+ were determined to be 0.05, 0.25, and 0.50 mM, respectively, similar to K m values of other vertebrate enolases. The amino acid composition of pig γγ-enolase, as determined by amino acid analysis, shows strong similarity to the compositions of γγ-enolases from rat, human, and mouse, as determined from their amino acid sequences. Despite the differences seen with some residues, and considering the ways that the compositions were obtained, it is assumed that pig γγ-enolase is more similar than the composition data would indicate. Moreover, it is likely that the sequences of pig γγ-enolase and the other γγ-enolases are almost identical. Li+ proved to be a noncompetitive inhibitor with either 2-PGA or Mg2+ as the variable substrate. This enolase crystallized in the monoclinic space group P2, or P21. An R symm <5% was obtained for data between 50 and 3.65 Å, but was a disappointing 30% for data between 3.65 and 3.10 Å, indicating crystal disorder.  相似文献   

2.
1. Rabbit liver enolase (EC 4.2.1.11) was purified about 200-fold and the enzyme was distinguished from crystalline muscle enolase by column isoelectrofocusing. It was found that the pI of muscle enolase was at about pH 8.8 and the pI of liver enolase was at about pH 6.7. Liver enolase was more liable to heat than muscle enolase. Anti-muscle enolase antibody did not react with liver enolase in double diffusion and immunoprecipitation tests. No substantial difference seemed to exist between muscle and liver enolases in pH optima, kinetic constants, and gel filtration. 2. It was observed by electrofocusing that the pI of rat muscle enolase was pH 7.2 to 7.9 and that of liver enolase was about pH 5.9. The main component of muscle enolase was designated as type A enolase, and liver enolase as type B enolase. Type A enolase was present in skeletal muscle and heart muscle. Type B enolase was widely distributed and present in liver, kidney, spleen, brain, lung, small intestine, and heart muscle. More acidic isozyme than type B enolase coexisted in the brain, and more basic isozyme than type A enolase, coexisted in the small intestine. A prototype of enolase in the early stage of differentiation was found to be type B enolase and, as differentiation progressed, type B decreased in muscle, while type A increased. On the other hand, liver enolase was retained as type B during differentiation. The enolase in regenerating liver was the same as in normal liver.  相似文献   

3.
Chicken brain enolase was found to show multiple forms (I, II and III) separable by DEAE-cellulose column chromatography, whereas enolase from chicken skeletal muscle showed a single form. Brain enolase I, enolase III and muscle enolase were purified to electrophoretic homogeneity. These three isozymes were dimeric enzymes, each being composed of two identical subunits, alpha, gamma and beta, having molecular weight of 51,000 +/- 600, 52,000 +/- 550 and 51,500 +/- 650, respectively, as determined by SDS-polyacrylamide gel electrophoresis analysis. Brain enolases I, II and III and muscle enolase had similar catalytic parameters, including almost the same Km values and pH optima. Specific antibodies against brain enolase I, enolase III and muscle enolase, raised in rabbit, showed no cross-reactivity with each other. Antibodies for brain enolases I and III also reacted with brain enolase II, indicating that brain enolase II was the hybrid form (alpha gamma) of brain enolases I (alpha alpha) and III (gamma gamma). Enolases from chicken liver, kidney and heart reacted with the antisera for brain enolase I, but not with those for brain enolase III or muscle enolase. Developmental changes in enolase isozyme distribution were observed in chicken brain and skeletal muscle. In brain, the alpha gamma and gamma gamma forms were not detected in the early embryonic stage and increased gradually during the development of the brain, whereas the alpha alpha form existed at an almost constant level during development. In skeletal muscle, complete switching from alpha alpha enolase to beta beta was observed during the period around hatching.  相似文献   

4.
The first, enolase (2-phospho-d-glycerate hydrolyase, EC 4.2.1.11) to be isolated from a gluconeogenic tissue, swine kidney, was purified more than 600-fold to near homogeneity, as estimated from sedimentation equilibrium and velocity measurements and from disc electrophoresis patterns. The physical properties of the enzyme were examined. Purified kidney enolase has a s0.87%20,w = 5.87 S, Mr = 90,000 ± 4,500, e0.1%280,1cm = 1.07/mg/ml, a Stokes radius of 37.0 Å, and an apparent subunit molecular weight of 52,000.The amino acid composition was determined and compared with those of mammalian muscle enolases. The partial specific volume calculated from the amino acid composition was found to be 0.728 cc/g. Swine kidney enolase had 12 cysteines per mole; in the native enzyme, two reacted with DTNB.The enzyme was stabilized by magnesium, sucrose, or glycerol; activity lost, on prolonged storage could be completely recovered by treatment with mercaptoethanol and EDTA at 37 °C. Some evidence was obtained for the existence of active monomers of this enzyme. This form of swine kidney enolase was quite unstable, however. The pH optimum was at 6.8. The Michaelis constants for 2-phospho-d-glycerate and phosphoenolpyruvate were 5.10?5m and 10?4m; that for magnesium was 4.10?4m. Substrate inhibition was found for 2-phosphoglycerate but not for phosphoenolpyruvate. No inhibition is seen under comparable conditions with mammalian enolases from glycolytic tissues. This finding is discussed.  相似文献   

5.
The treatment of enolase from pig and carp (Cyprinus carpio) with proteases resulted in a decrease of enzymatic activity, which depended on the kind of protease used. The most active were trypsin and subtilisin. Substrate and magnesium ions protected enolase against inactivation. The enolase from pig muscle was much more resistant to protease action than this enzyme from carp muscle. Some differences in the structure between the two enolases are suggested.  相似文献   

6.
Purification and properties of gammagamma-enolase from pig brain   总被引:1,自引:0,他引:1  
Isoelectric focusing revealed three enolase isoforms in pig brain, which were designated as - (pI = 6.5), - (pI = 5.6), and -enolase (pI = 5.2). The pI of purified -enolase was also 5.2. The -enolase isoform of enolase was purified from pig brain by a purification protocol involving heating to 55°C for 3 min, acetone precipitation, ammonium sulfate precipitation (40%–80%), DEAE Sephadex ion-exchange chromatography (pH 6.2), and Sephadex G200 gel filtration. The final specific activity was 82 units/mg protein. As with other vertebrate enolases, -enolase from pig proved to be a dimer with a native mass of 85 kDa and a subunit mass of 45 kDa. The pH optimum for the reaction in the glycolytic direction is 7.2. The K m values for 2-PGA, PEP, and Mg2+ were determined to be 0.05, 0.25, and 0.50 mM, respectively, similar to K m values of other vertebrate enolases. The amino acid composition of pig -enolase, as determined by amino acid analysis, shows strong similarity to the compositions of -enolases from rat, human, and mouse, as determined from their amino acid sequences. Despite the differences seen with some residues, and considering the ways that the compositions were obtained, it is assumed that pig -enolase is more similar than the composition data would indicate. Moreover, it is likely that the sequences of pig -enolase and the other -enolases are almost identical. Li+ proved to be a noncompetitive inhibitor with either 2-PGA or Mg2+ as the variable substrate. This enolase crystallized in the monoclinic space group P2, or P21. An R symm <5% was obtained for data between 50 and 3.65 Å, but was a disappointing 30% for data between 3.65 and 3.10 Å, indicating crystal disorder.  相似文献   

7.
Using essentially a two-step procedure involving phosphocellulose column chromatography followed by gel filtration on Sephadex G200, pig heart pyruvate kinase (PH PyK) was purified 267-fold to at least 97% purity. PH PyK co-sedimented with rabbit muscle PyK during sucrose density ultracentrifugation yielding an S20,w of 10 and a corresponding molecular weight of about 237,000. Sodium docedyl sulfate polyacrylamide gel electrophoresis yielded a subunit molecular weight of approximately 59,000, suggesting that native PH PyK exists as a tetramer. The isoelectric point (pI) was determined to be 8.2, and thepH optimum (pHo) for the forward reaction is 7.2. Steady-state kinetics with phospho(enol)pyruvate (PEP) as the variable substrate show that there is a threefold decrease in the Km for PEP in the presence of 1.0 mM fructose-1,6-diphosphate (FDP), and that the activity of PH PyK is increased over fourfold by FDP at low (0.1 mM) PEP concentrations. Lineweaver-Burk plots are linear in the presence and absence of FDP, indicating that the Michaelis-Menten curves are hyperbolic. The amino acid composition for pig heart PyK shows close similarities between pig muscle and kidney PyKs, but not liver PyK. Among the data on pI,pHo, and FDP activation, only the activation by FDP is useful in tentatively designating pig heart PyK as an M2 isozyme.Presented in partial fulfillment for the Master of Science degree.  相似文献   

8.
Abstract: A simple and rapid purification method is presented for the two mouse cerebral isozymes of enolase (EC 4.2.1.11), E1 and E3. The purity of the preparations was ascertained by electrophoresis under two different conditions. The biochemical and immunological properties of E1 and E3 were compared. The molecular weight of the cerebral enolases was analysed by column chromatography on Sephadex G 150 and by electrophoresis in the presence of SDS. Both E1 and E3 are homodimers with a subunit of molecular weight of 50,000. The procedure also yields a semi-purified fraction of E2. Conditions of in vitro formation of E2 from pure or semi-purified fractions of E1 and E3 show that it is likely to be a real hybrid, rather than an aggregate and that it is probably not an artefact formed during the purification. The Km values (Km= 3–4·10?5 M) for the substrate are not significantly different amongst the three forms. However, E1 and E2 but not E3 are inhibited by excess substrate. Antisera against E1 and E3 have been obtained from rabbit and goat, respectively. Antibodies against each protein do not show any cross-reactivity with each other. There is, however, a broad species cross-reactivity, showing conservation of each enolase form during evolution. Both anti-E1 and anti-E3 sera react with the E2 enolase fraction, in agreement with its hybrid structure. Anti-E3 serum does not react with extracts of other tested organs. Brain enolase 1 resembles liver enolase in its biochemical and immunological properties. A slight cross-reactivity of anti-E1 serum with muscle extracts is observed. Heterogeneity of brain enolase 1 is observed by both biochemical and immunological methods; the nature of this heterogeneity is discussed.  相似文献   

9.
Levels of three enolase isozymes (αα, αγ and γγ) were determined in rat tissues from one-cell embryo to adult brain with a sensitive enzyme immunoassay system. Each embryo of the early stage (gestational age, 0–3 days) contained about 5 × 10?17 mol of αα enolase. The nervous system-specific αγ and γγ enolases would be detected in the embryos of 6–8 days, which contain no histologically recognizable neurones. The 8-day embryos contained 4.3 × 10?17 and 3.4 × 10?16 mol of αγ and γγ enolases. Amounts of all the three enolases were increased with growth of the embryo. The nervous system-specific enolases (αγ and γγ) in the brain kept increasing until 1–2 months of postnatal age, whereas the αα enolase level in the brain was relatively constant after the 15-day embryo through the adult rat.  相似文献   

10.
Although smooth muscle and endothelial cells in pig coronary artery are morphologically and functionally distinct, ascorbate uptake has been characterized only in smooth muscle cells. Ascorbate transporters in kidney and intestinal epithelial cells differ from those in smooth muscle. We examined ascorbate transport and mRNA expression of sodium-dependent vitamin C transporters (SVCT) by RT-PCR in the pig coronary artery endothelial cell cultures. When 14C-ascorbate uptake in endothelial cells was examined as 14C or by HPLC, the two values did not differ from each other. 14C-ascorbate uptake was Na+-dependent, stereoselective for l-ascorbate and inhibited by sulfinpyrazone. The kinetic characteristics of the uptake were: Km = 27± 3 M (Hill coefficient = 1) for ascorbate and Km = 73± 14 mM (Hill coefficient = 2) for Na+. Surprisingly, endothelial cells had similar kinetic parameters as smooth muscle cells, except for a slightly lower uptake velocity in endothelial cells. Comparison with the smooth muscle showed that both tissue types expressed mRNA for SVCT2. Endothelial cells differ from epithelial cells which express mainly SVCT1 but resemble smooth muscle cells in this respect. (Mol Cell Biochem 271: 43–49, 2005)  相似文献   

11.
Purified enolase from Bacillus subtilis has a native mass of approximately 370 kDa. Since B. subtilis enolase was found to have a subunit mass of 46.58 kDa, the quaternary structure of B. subtilis is octameric. The pl for B. subtilis enolase is 6.1, the pH optimum (pHo) for activity is 8.1–8.2, and the K m for 2-PGA is approximately 0.67 mM. Using the dimeric C structure of yeast dimeric enolase as a guide, these dimers were arranged as a tetramer of dimers to simulate the electron microscopy image processing obtained for the octameric enolase purified from Thermotoga maritima. This arrangement allowed identification of helix J of one dimer (residues 86–96) and the loop between helix L and strand 1 (HL–S1 loop) of another dimer as possible subunit interaction regions. Alignment of available enolase amino acid sequences revealed that in 16 there are two tandem glycines at the C-terminal end of helix L and the HL–S1 loop is truncated by 4–6 residues relative to the yeast polypeptide, two structural features absent in enolases known to be dimers. From these arrangements and alignments it is proposed that the GG tandem at the C-terminal end of helix L and truncation of the HL–S1 loop may play a critical role in octamer formation of enolases. Interestingly, the sequence features associated with dimeric quaternary structure are found in three phylogenetically disparate groups, suggesting that the ancestral enolase was an octamer and that the dimeric structure has arisen independently multiple times through evolutionary history.  相似文献   

12.
Summary Pyruvate kinases from flight muscle and fat body of the cockroach,Periplaneta americana, were purified to homogeneity. The two tissues contained different forms of the enzyme which were separable by starch gel electrophoresis and isoelectric focusing (pI=5.75 for flight muscle and 6.15 for fat body). Both enzymes had molecular weights of 235,000±20,000.Flight muscle pyruvate kinase displayed Michaelis-Menten kinetics with respect to both ADP and P-enolpyruvate withK m values of 0.27 and 0.04 mM, respectively.K m for Mg2+ was 0.60 mM andK a for K+ was 15 mM. The enzyme was weakly inhibitied by four compounds, ATP, arginine-P,l-alanine and citrate with apparentK i values of 3.5, 15, 20 and 24 mM, respectively. Competitive inhibition by 3 mM ATP or 10 mM arginine-P raised theK m for P-enolpyruvate to 0.067 or 0.057 mM. Fructose-1,6-P2 did not activate the enzyme but reversed inhibitions by ATP and arginine-P.Fat body pyruvate kinase showed sigmoidal kinetics with respect to P-enolpyruvate with S0.5=0.32 mM andn H=1.43.K m values for ADP and Mg2+ were 0.30 and 0.80 mM, respectively with aK a for K+ of 10 mM. ATP andl-alanine were inhibitors of the enzyme; 2 mM ATP raised S0.5 for P-enolpyruvate to 0.48 mM while 3 mMl-alanine increased S0.5 to 0.84 mM. Neither citrate nor arginine-P inhibited the enzyme but citrate affected the enzyme by reversingl-alanine inhibition. Fat body pyruvate kinase was strongly activated by fructose-1,6-P2 with an apparentK a of 1.5 M. Fructose-1,6-P2 at 0.1 mM reduced S0.5 for P-enolpyruvate to 0.05 mM andn H to 1.0.Flight muscle and fat body pyruvate kinases from the cockroach show properties analogous to those of the muscle and liver forms of mammalian pyruvate kinase. Fat body pyruvate kinase is suited for on-off function in a tissue with a gluconeogenic capacity. Strong allosteric control with a feed-forward activation by fructose-1,6-P2 is key to coordinating enzyme function with glycolytic rate. The function of flight muscle pyruvate kinase in energy production during flight is aided by a lowK m for P-enolpyruvate, weak inhibitor effects by high energy phosphates and deinhibition of these effects by fructose-1,6-P2.  相似文献   

13.
Emodin O-methyltransferase, an enzyme catalyzing methylation of the 8-hydroxy group of emodin, was identified in the mould Aspergillus terreus IMI 16043, a (+)-geodin producing strain. The enzyme catalyzed the formation of questin from emodin and S-adenosyl-l-methionine. By chromatography on DEAE-cellulose, Phenyl Sepharose, Q-Sepharose, Hydroxyapatite, and CM-cellulose, emodin O-methyltransferase was purified to apparent homogeneity. The purified protein had a molecular weight of 322 kDa as estimated by gel filtration and 53.6 kDa as estimated by gel electrophoresis under denaturing conditions, suggesting that the active enzyme was a homohexamer. The enzyme showed pI 4.4 and optimum pH 7–8. Magnesium ion or manganese ion was not an absolute requirement, nor increased the enzyme activity. The enzyme had strict substrate specificity and very low Km values for both emodin (3.4×10-7 M) and S-adenosyl-l-methionine (4.1×10-6 M).Abbreviations EOMT emodin O-methyltransferase from A. terreus - SAM S-adenosyl-l-methionine - PAGE polyacrylamide gel electrophoresis  相似文献   

14.
15.
There are multiple stages in the life cycle of Plasmodium that invade host cells. Molecular machinery involved is such host–pathogen interactions constitute excellent drug targets and/or vaccine candidates. A screen using a phage display library has previously demonstrated presence of enolase on the surface of the Plasmodium ookinete. Phage-displayed peptides that bound to the ookinete contained a conserved motif (PWWP) in their sequence. Here, direct binding of these peptides with recombinant Plasmodium falciparum enolase (rPfeno) was investigated. These peptides showed specific binding to rPfeno, but failed to bind to other enolases. Plasmodium spp enolases are distinct in having an insert of five amino acids (104EWGWS108) that is not found in host enolases. The possibility of this insert being the recognition motif for the PWWP containing peptides was examined, (i) by comparing the binding of the peptides with rPfeno and a deletion variant Δ-rPfeno lacking 104EWGWS108, (ii) by measuring the changes in proton chemical shifts of PWWP peptides on binding to different enolases and (iii) by inter-molecular docking experiment to locate the peptide binding site. Results from these studies showed that the pentapeptide insert of Pfeno indeed constitutes the binding site for the PWWP domain containing peptide ligands. Search for sequences homologous to phage displayed peptides among peritrophic matrix proteins resulted in identification of perlecan, laminin, peritrophin and spacran. The possibility of these PWWP domain-containing proteins in the peritrophic matrix of insect gut to interact with ookinete cell surface enolase and facilitate the invasion of mosquito midgut epithelium is discussed.  相似文献   

16.
We have isolated and purified enolase fromClostridium difficile. This is the first report of an enolase of theClostridium genus, and in general its characteristics resemble those described previously for other species, except that it is extremely thermostable. Interestingly,C. difficile enolase has an octameric structure (approximately 300 kDa on native PAGE, 50 kDa on SDS PAGE, and 338 kDa by gel filtration). Enolases fromC. sordellii andC. bifermentans have been partially purified and have a molecular weight similar to that ofC. difficile. It may be that this large size is common for enolases isolated from bacteria of theClostridium genus.  相似文献   

17.
烯醇酶(enolase)是糖酵解途径中的一个重要酶类,它能够催化磷酸甘油酸酯(2-PGA)生成磷酸烯醇丙酮酸酯(PEP).我们通过RACE-PCR方法从油菜(Brassica napus L.)中克隆到了编码烯醇酶的全长基因.序列分析表明该基因全长cDNA为1 624bp,拥有一个由444个氨基酸组成的开放读码框,所编码的蛋白质分子量为47.38 kD,等电点为5.78.比较发现,油菜烯醇酶与已分离出的其他烯醇酶氨基酸序列有较高的同源性.Southern杂交结果显示烯醇酶以低拷贝形式在油菜基因组中存在.RT-PCR和Northern分析表明烯醇酶基因在100 mmol/L盐浓度胁迫条件下表达量上升,而在低温诱导时表达量下降.该研究表明所克隆基因是植物烯醇酶基因家族的新成员.  相似文献   

18.
烯醇酶(enolase)是糖酵解途径中的一个重要酶类,它能够催化磷酸甘油酸酯(2-PGA)生成磷酸烯醇丙酮酸酯(PEP)。我们通过RACE-PCR方法从油菜(Brassica napus L. )中克隆到了编码烯醇酶的全长基因。序列分析表明该基因全长cDNA为1624bp,拥有一个由444个氨基酸组成的开放读码框,所编码的蛋白质分子量为47.38kD,等电点为5.78。比较发现,油菜烯醇酶与已分离出的其他烯醇酶氨基酸序列有较高的同源性。Southern杂交结果显示烯醇酶以低拷贝形式在油菜基因组中存在。RT-PCR和Northern分析表明烯醇酶基因在100mmol/L盐浓度胁迫条件下表达量上升,而在低温诱导时表达量下降。该研究表明所克隆基因是植物烯醇酶基因家族的新成员。  相似文献   

19.
Summary A sarcoplasmic calcium-binding protein (SCP) has been purified from the muscle of the protochordate Amphioxus and shown to be more similar to invertebrate SCP's than to their counterpart found in vertebrates, i.e. parvalbumins. The Amphioxus protein has a pI of 4.9, is rich in tyrosine and tryptophan, has a molecular weight of 22,000 and binds strongly 2Ca2+ with a pK of 7.88. Magnesium competes with calcium for only one of the two metal-binding sites and induces positive cooperativity in Ca2+ binding.In cyclostome muscle (lamprey and hagfish), no protein with high affinity for Ca2+ or Mg2+ could be found, irrespective of molecular weight. Instead, a protein with moderate affinity for Ca2+ (105 m –1) was detected: it has a molecular weight of 60,000 and might be quite ubiquitous, as the presence of a similar protein has been reported both in red and white muscle of vertebrates such as chicken and rabbit.  相似文献   

20.
In the past, several unsuccessful attempts have been made to dissociate homodimeric enolases into their active monomeric forms. The main objective of these studies had been to understand whether intersubunit interactions are essential for the catalytic and structural stability of enolases. Further motivation to investigate the properties of monomeric enolase has arisen from several recent reports on the involvement of enolase in diverse nonglycolytic (moonlighting) functions, where it may occur in monomeric form. Here, we report successful dissociation of dimeric enolases from Plasmodium falciparum, yeast and rabbit muscle into active and isolatable monomers. Dimeric enolases could be dissociated into monomers by high concentrations ( approximately 250 mm) of imidazole and/or hydrogen ions. Two forms were separated using Superdex-75 gel filtration chromatography. A detailed comparison of the kinetic and structural properties of monomeric and dimeric forms of recombinant P. falciparum enolase showed differences in specific activity, salt-induced inhibition and inactivation, thermal stability, etc. Furthermore, we found that enolases from the three species differ in their dimer dissociation profiles. Specifically, on challenge with imidazole, Mg(II) protected the enolases of yeast and rabbit muscle but not of P. falciparum from dissociation. The observed differential stability of the P. falciparum enolase dimer interface with respect to mammalian enolases could be exploited to selectively dissociate the dimeric parasite enzyme into its catalytically inefficient, thermally unstable monomeric form. Thus enolase could be a novel therapeutic target for malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号