首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O -methyltransferase, and cinnnamyl alcohol dehydrogenase were localized to differentiating xylem. These enzymes are particularly abundant during secondary wall formation. Immunolabeling was observed on polysomes and in the cytosol of the cells during secondary wall formation, indicating that these enzymes are synthesized in the polysomes and released in the cytosol. The synthesis of monolignols might occur in the cytosol. Immunolabeling of anionic peroxidase was also localized to the differentiating xylem, particularly during secondary wall formation. The labeling, however, was observed in the rough endoplasmic reticulum (r-ER), the Golgi apparatus, and the plasma membrane, indicating that peroxidase is synthesized in the r-ER, transported to the Golgi apparatus, and localized on the plasma membrane by fusion of the Golgi vesicles to the membrane. Received 3 September 2001/ Accepted in revised form 16 October 2001  相似文献   

2.
Secondary wall thickening is the most characteristic morphologicalfeature of the differentiation of tracheary elements. Isolatedmesophyll cells of Zinnia elegans L. cv. Canary Bird in differentiationmedium are converted to tracheary elements, which develop lignifiedsecondary wall thickenings. Using this system, we investigatedthe distribution of two enzymes, phenylalanine ammonia-Iyase(PAL) (EC 4.3.1.5 [EC] ) and cinnamyl alcohol dehydrogenase (CAD)(EC 1.1.1.195 [EC] ), by both biochemical and immunological methods.Both PAL and CAD appear to be key enzymes in the biosynthesisof lignin precursors, and they have been shown to be associatedwith the differentiation of tracheary elements. Cultured cellswere collected after various times in culture. The culture mediumwas separated from cells by centrifugation and designated fraction(1), the extracellular fraction. The collected cells were homogenizedand separated into four fractions: (2) cytosol; (3) microsomes;(4) cell walls (loosely bound material); and (5) cell walls(tightly bound material). PAL activity was detected in eachfraction. The extracellular fraction consistently had the greatestPAL activity. Moreover, PAL activity in the cytosolic fractionincreased rapidly prior to lignification, as it did in boththe microsomal and the cell wall (tightly bound) fractions duringlignification. Antisera against PAL and against CAD detectedthe proteins with molecular masses that corresponded to thoseof PAL and CAD in Zinnia. Immuno-electron microscopy revealedthat, in differentiating tracheary elements, PAL was dispersedin the cytoplasmic matrix and was located on Golgi-derived vesiclesand on the secondary wall thickenings. "Cell-free" immuno-lightmicroscopy supported the putative distribution of PAL on lignifyingsecondary walls. The pattern of distribution of CAD was similarto that of PAL. Thus, both PAL and CAD seemed to be localizedin secondary wall thickenings. From the results of both biochemicalassays and immunocytochemical staining, it appeared that atleast two types of PAL and CAD are present in differentiatingcells. One type of each enzyme is distributed in the cytosol,while the other is secreted from the Golgi apparatus and transportedby Golgi-derived vesicles to the secondary wall thickenings. (Received April 19, 1996; Accepted November 18, 1996)  相似文献   

3.
Antisera raised againstl-phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and a cationic cell-wall peroxidase, which had all been purified from suspension-cultured cells of French bean, have been used to carry out immunogold localisations in the growing plant. Immunoglobulin-G fractions were prepared from each antiserum and used to study the distribution of the enzymes in differentiating and wounded hypocotyls by immunogold techniques and visualisation by both light and electron microscopy. Following silver enhancement to amplify the signal, proteins were detected by confocal microscopy in both developing (pre-xylem/ phloem) and later metaxylem stelar tissue.l-Phenylalanine ammonia-lyase and C4H also accumulated in cells adjacent to metaxylem, presumably involved in maintaining a supply of phenylpropanoid precursors to the enucleated xylem for further lignin synthesis. In these cells, PAL subunits were cytosolic although some were associated with endomembrane. Cinnamate-4-hydroxylase was wholly associated with membrane and particularly high concentrations were found in the Golgi bodies. The cationic peroxidase accumulated in xylem at sites of secondary thickening and in the middle lamella. The three proteins are also involved in defensive lignification. Thus when visualised by light microscopy, PAL and C4H were seen to accumulate to high levels throughout the cell types in wound sites and especially in the epidermal cells. An even more intense general distribution was found upon hyperinduction of wounded cells with-aminooxy--phenylpropionic acid. At the subcellular level, PAL was found to be localised in the cytosol in the wounded cells; however, because of the loss of membrane through mechanical damage, association with membrane structures, particularly endoplasmic reticulum, in unwounded cells is not entirely ruled out. Cinnamate-4-hydroxylase was associated with membranes when these were preserved. In wounded tissue, the peroxidase was found at the growing edges of tylose-like structures in the vascular xylem.Abbreviations AOPP -aminooxy--phenylpropionic acid - C4H cinnamic acid-4-hydroxylase - CHS chalcone synthase - GRP glycine-rich glycoprotein - HRGP hydroxyproline-rich glycoprotein - Ig immunoglobulin - PAL phenylalanine ammonia-lyase G.P.B. thanks the Agicultural and Food Research Council for support.  相似文献   

4.
During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.  相似文献   

5.
During heartwood formation, a kind of apoptosis in the inner parts of woody axes, phenolic substances are accumulated by in situ biosynthesis. In Robinia pseudoacacia L, these compounds are mainly flavonoids. In the present work, we performed a study to show if there is a correlation between measurable activities and detectable protein levels of phenylalanine ammonia lyase (PAL; EC 4.3.1.5) and chalcone synthase (CHS; EC 2.3.1.74), key enzymes of general phenylpropanoid metabolism and flavonoid biosynthesis, respectively. After separation of total protein extracts by one-dimensional micro-gel electrophoresis, newly emerging polypeptides were detectable within the sapwood-heartwood transition zone, pointing toward a transient activation of metabolism shortly before cell death occurs. Most prominent was a polypeptide around 46 kDa. By immunoblotting, this band was identified as a CHS subunit. Thus, the exclusive presence of both enzyme protein and extractable enzyme activity of CHS in the heartwood bordering tissue was shown. In contrast, levels of PAL protein were similar in all xylem tissues which contain living cells. PAL activity, however, was measurable only in the differentiating xylem and the sapwood-heartwood transition zone. From these results we conclude that during heartwood formation, CHS and PAL differ in their mode of regulation. It seems likely that CHS activity is regulated at the level of enzyme protein while PAL regulation is most probably post-translational.  相似文献   

6.
7.
A protein fraction [precipitate obtained between 40 and 65% (NH4)2SO4 satn.] prepared from cambial cells, differentiating xylem cells and differentiated xylem cells of pine and fir trees contained all the enzymes required for the nucleoside diphosphate sugar interconversions. By using UDP-D-[U-14C]glucose or UDP-D-[U-14C]galactose, UDP-D-[U-14C-]glucuronic acid and UDP-D-[U-14C]xylose as substrates, the activities of UDP-D-galactose 4-epimerase (DC 5.1.3.2), UDP-D-xylose 4-epimerase(EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D-glucuronate 4-epimerase (EC5.1.3.6), UDP-d-glucuronate decarboxylase (EC 4.1.1.35) were measured at different stages of cell-wall development. The specific activities and the activities per cell of these enzymes varied during differentiation of cambium to xylem according to the type polysaccharide synthesized. Variations were also found between the two species investigated. These data, compared with those obtained in out previous work on angiosperms [see the preceding paper, Dalessandro & Northcote (1977) Biochem. J. 162, 267-279], suggest that some control of polysaccharide synthesis operates at the level of the formation of the precursors of pectin and hemicellulose syntheses.  相似文献   

8.
9.
Metabolic channeling has been proposed to occur at the entry point into plant phenylpropanoid biosynthesis. To determine whether isoforms of L-Phe ammonia-lyase (PAL), the first enzyme in the pathway, can associate with the next enzyme, the endomembrane-bound cinnamate 4-hydroxylase (C4H), to facilitate channeling, we generated transgenic tobacco (Nicotiana tabacum) plants independently expressing epitope-tagged versions of two PAL isoforms (PAL1 and PAL2) and C4H. Subcellular fractionation and protein gel blot analysis using epitope- and PAL isoform-specific antibodies indicated both microsomal and cytosolic locations of PAL1 but only cytosolic localization of PAL2. However, both PAL isoforms were microsomally localized in plants overexpressing C4H. These results, which suggest that C4H itself may organize the complex for membrane association of PAL, were confirmed using PAL-green fluorescent protein (GFP) fusions with localization by confocal microscopy. Coexpression of unlabeled PAL1 with PAL2-GFP resulted in a shift of fluorescence localization from endomembranes to cytosol in C4H overexpressing plants, whereas coexpression of unlabeled PAL2 with PAL1-GFP did not affect PAL1-GFP localization, indicating that PAL1 has a higher affinity for its membrane localization site than does PAL2. Dual-labeling immunofluorescence and fluorescence energy resonance transfer (FRET) studies confirmed colocalization of PAL and C4H. However, FRET analysis with acceptor photobleaching suggested that the colocalization was not tight.  相似文献   

10.
The Golgi apparatus is enriched in specific enzymes involved in the maturation of carbohydrates of glycoproteins. Among them, alpha-mannosidases IA, IB and II are type II transmembrane Golgi-resident enzymes that remove mannose residues at different stages of N-glycan maturation. alpha-Mannosidases IA and IB trim Man9GlcNAc2 to Man5GlcNAc2, while alpha-mannosidase II acts after GlcNAc transferase I to remove two mannose residues from GlcNAcMan5GlcNAc2 to form GlcNAcMan3GlcNAc2 prior to extension into complex N-glycans by Golgi glycosyltransferases. The objective of this study is to examine the expression as well as the subcellular localization of these Golgi enzymes in the various cells of the male rat reproductive system. Our results show distinct cell-and region-specific expression of the three mannosidases examined. In the testis, only alpha-mannosidase IA and II were detectable in the Golgi apparatus of Sertoli and Leydig cells, and while alpha-mannosidase IB was present in the Golgi apparatus of all germ cells, only the Golgi apparatus of steps 1-7 spermatids was reactive for alpha-mannosidase IA. In the epididymis, principal cells were unreactive for alpha-mannosidase II, but they expressed alpha-mannosidase IB in the initial segment and caput regions, and alpha-mannosidase IA in the corpus and cauda regions. Clear cells expressed alpha-mannosidase II in all epididymal regions, and alpha-mannosidase IB only in the caput and corpus regions. Ultrastructurally, alpha-mannosidase IB was localized mainly over cis saccules, alpha-mannosidase IA was distributed mainly over trans saccules, and alpha-mannosidase II was localized mainly over medial saccules of the Golgi stack. Thus, the cell-specific expression and distinct Golgi subcompartmental localization suggest that these three alpha-mannosidases play different roles during N-glycan maturation.  相似文献   

11.
The cell wall polymer lignin is believed to be condensed by specific cell wall-localized oxidoreductases. In many plants species, including poplar, the peroxidase-directed oxidation of the lignin analogue syringaldazine (SYR) has been localized to cells that undergo secondary wall formation, a process that includes lignification. As a first step to analyse the corresponding peroxidases, we have isolated previously two anionic isoenzymes (PXP 3-4 and PXP 5) from poplar xylem (Populus trichocarpa), which use SYR as a substrate. Here, we demonstrate that these enzymes are responsible for the visualized SYR oxidation in the developing xylem. The cDNA that corresponds to PXP 3-4 was isolated and the deduced protein was found closely related to the other SYR-oxidizing peroxidase PXP 5 (ca. 98% of identity). PXP 3-4 was expressed in a baculovirus expression system yielding high levels of active peroxidase (3 mg/l medium). The heterologously produced protein showed characteristics similar to those of the corresponding protein from poplar xylem (enzymatic properties, isoelectric point, and migration in a native gel). PXP 3-4 was expressed in the stem and in the root xylem. The data demonstrate that PXP 3-4 (and/or PXP 5) are present in differentiating xylem, supporting a function in secondary cell wall formation.  相似文献   

12.
Golgi apparatus isolated from cat liver contained UDPglucose pyrophosphorylase (UTP:alpha-D-glucose-1-phosphate uridylyltransferase, EC 2.7.7.9) activity. The results of washing suggested that pyrophosphorylase was bound firmly to Golgi membranes. Moreover, the enzyme was activated by Triton X-100 in the same extent as galactosyltransferase, a typical Golgi apparatus enzyme. Two-substrate kinetic studies were performed with the enzymes from cytosol and Golgi fractions. The soluble enzyme showed an apparent 2.5-fold greater activity for the glucose 1-phosphate than for UTP, while pyrophosphorylase of Golgi apparatus had the same affinity for the two substrates. A random mechanism was observed with a direct dependence of apparent Michaelis constant values on the concentration of second substrate for soluble enzyme. In contrast, with Golgi enzyme one ligand had no effect on the binding of the other.  相似文献   

13.
Biochemical evidence from the preceding paper indicated that [3H]N- acetylmannosamine may be used as a fairly specific precursor for the sialic acid residues of glycoproteins (and perhaps glycolipids) in radioautographs of rat liver and duodenum. In order to study the site of incorporation of this label in cell types of various tissues, we gave 40-g rats and 15-g Swiss albino mice a single intravenous injection of 8 mCi of [3H]N-acetylmannosamine and sacrificed them after 2 and 10 min. To trace the subsequent migration of the labeled glycoproteins, we injected 40-g rats with 4 mCi of [3H]N- acetylmannosamine and sacrificed them after 20 and 30 min, 1, 4, and 24 h, and 3 and 9 d. Light microscope radioautographic analysis revealed that in a great variety of cell types the label was initially localized to the Golgi region. Electron microscope radioautographic analysis of duodenal villous columnar and goblet cells, pancreatic acinar cells and Paneth cells, from rats and mice sacrificed 10 min after injection, showed that the silver grains were localized over Golgi saccules (and adjacent secretion granules). In kidney proximal and distal tubule cells reaction was initially localized to the Golgi apparatus in some areas of the kidney cortex whereas in other areas it was more diffuse. In all cells, the proportion of silver grains over the Golgi apparatus decreased with time after injection while an increasing number of grains appeared over secretion products in secretory cells or over the plasma membrane in other cell types. Lysosomes also became increasingly labeled at later time intervals. The above results suggest that in most cell types sialic acid residues are incorporated into glycoproteins (and perhaps glycolipids), primarily in the Golgi apparatus. With time, these newly synthesized molecules migrate to secretion products, to the plasma membrane, or to the lysosomes.  相似文献   

14.
Phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and the C4H redox partner cytochrome p450 reductase (CPR) are important in allocating significant amounts of carbon from phenylalanine into phenylpropanoid biosynthesis in plants. It has been proposed that multienzyme complexes (MECs) containing PAL and C4H are functionally important at this entry point into phenylpropanoid metabolism. To evaluate the MEC model, two poplar PAL isoforms presumed to be involved in either flavonoid (PAL2) or in lignin biosynthesis (PAL4) were independently expressed together with C4H and CPR in Saccharomyces cerevisiae, creating two yeast strains expressing either PAL2, C4H and CPR or PAL4, C4H and CPR. When [(3)H]Phe was fed, the majority of metabolized [(3)H]Phe was incorporated into p-[(3)H]coumarate, and Phe metabolism was highly reduced by inhibiting C4H activity. PAL alone expressers metabolized very little phenylalanine into cinnamic acid. To test for intermediate channeling between PAL and C4H, we fed [(3)H]Phe and [(14)C]cinnamate simultaneously to the triple expressers, but found no evidence for channeling of the endogenously synthesized [(3)H]cinnamate into p-coumarate. Therefore, efficient carbon flux from Phe to p-coumarate via reactions catalyzed by PAL and C4H does not appear to require channeling through a MEC in yeast, and instead biochemical coupling of PAL and C4H is sufficient to drive carbon flux into the phenylpropanoid pathway. This may be the primary mechanism by which carbon allocation into phenylpropanoid metabolism is controlled in plants.  相似文献   

15.
Jane Robb  Barbara Lee 《Protoplasma》1986,135(2-3):102-111
Summary The most prominent ultrastructural characteristics of the cyst ofHaptoglossa mirabilis are a large centrally-placed nucleus which is partially ringed by three or four parallel cisternae of rough endoplasmic reticulum (r-ER), a centriole pair and single large Golgi complex which occupy the anterior end of the cell, and a population of provacuoles which occupies the posterior. During germination these organelles migrate into a narrow germ tube which subsequently expands to form the gun cell initial. The extracellular components of the attack apparatus (i.e. missile and injection tube) are formed entirely in the developing gun cell; indirect evidence suggests that both the Golgi complex and r-ER are involved in their synthesis. The intra-cellular component of the attack apparatus comprises the posterior, anterior and apical vacuoles. The posterior vacuole forms by fusion and expansion of the original cyst provacuoles; the formation of the anterior and apical vacuoles occurs late in gun cell differentiation and involves fusion of Golgi-derived vesicles.  相似文献   

16.
Leaves of a novel strain of peas (Pisum sativum L.) were used to determine the distribution of secondary metabolites and their biosynthetic enzymes. Leaf epidermal layers in this strain are easily separated from the parenchyma. Anthocyanins and flavonol glycosides were localized in epidermal vacuoles only. Among the biosynthetic enzymes studied, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), S-adenosyl-1-methionine (SAM):caffeic acid and SAM:quercetin methyltransferases (o-dihydric phenol methyltransferase, EC 2.1.1.42) and a flavonoid 7-O-glucosyltransferase (EC 2.4.1.91) were chiefly localized in the parenchyma, whereas trans-cinnamate 4-monooxygenase (EC 1.14.13.11), hydroxycinnamate:CoA ligases (EC 6.2.1.12) and a flavonoid 3-O-glucosyltransferase (EC 2.4.1.91) were found mainly in the epidermis. Flavanone (chalcone) synthase activity was found only in the epidermis, whereas chalcone isomerase (EC 5.5.1.6) was evenly distributed in epidermal and parenchyma tissues.  相似文献   

17.
We have previously shown that a fluorescent derivative of ceramide, N-(epsilon-7-nitrobenz-2-oxa-1,3-diazol-4-yl-aminocaproyl)-D-eryth ro-sphingosin e (C6-NBD-Cer), vitally stains the Golgi apparatus of cells (Lipsky, N. G., and R. E. Pagano. 1985. Science (Wash. DC). 228:745-747). In the present paper we demonstrate that C6-NBD-Cer also accumulates at the Golgi apparatus of fixed cells and we explore the mechanism by which this occurs. When human skin fibroblasts were fixed with glutaraldehyde and then incubated with C6-NBD-Cer at 2 degrees C, the fluorescent lipid spontaneously transferred into the cells, labeling the Golgi apparatus as well as other intracellular membranes. Subsequent incubations with defatted BSA at 24 degrees C removed excess C6-NBD-Cer from the cells such that fluorescence was then detected only at the Golgi apparatus. Similar results were obtained using other cell types. A method for visualizing the fluorescent lipid at the electron microscopic level, based on the photoconversion of a fluorescent marker to a diaminobenzidine product (Sandell, J. H., and R. H. Masland, 1988. J. Histochem. Cytochem. 36:555-559), is described and evidence is presented that C6-NBD-Cer was localized to the trans cisternae of the Golgi apparatus. While accumulation occurred in cells fixed in various ways, it was inhibited when fixation protocols that extract or modify cellular lipids were used. In addition, Filipin, which forms complexes with cellular cholesterol, labeled the Golgi apparatus of fixed cells and inhibited accumulation of C6-NBD-Cer at the Golgi apparatus. These results are discussed in terms of a simple model based on the physical properties of C6-NBD-Cer and its interactions with endogenous lipids of the Golgi apparatus. Possible implications of these findings for metabolism and transport of (fluorescent) sphingolipids in vivo are also presented.  相似文献   

18.
Sauer, A. and Robinson, D. G. 1985. Subcellular localizationof enzymes involved in lecithin biosynthesis in maize roots.—J.exp. Bot. 36: 1257–1266. The distribution of several enzymes involved in phospholipidbiosynthesis in growing primary roots of maize seedlings hasbeen investigated. Whereas the terminal enzyme in lecithin biosynthesis,CDP-choline: phosphorylcholine diglyceride transferase, as wellas glycerophosphate acyltransferase are primarily membrane-boundwith activities being similarly distributed between endoplasmicreticulum and Golgi apparatus-rich fractions, more than two-thirdsof the activity of phosphoryicholine CTP: cytidyl transferaseis found in the cytosol. The remainder of this enzyme is almostexclusively associated with fractions rich in Golgi apparatusmembranes. In addition, minor activities for both of the lecithinbiosynthetic enzymes were found localized in the inner mitochondrialmembrane. Attempts at inducing a translocation of cytidyl transferaseactivity from the cytosol to the endoplasmic reticulum by incubationin vitro and in vivo with mixtures of unsaturated fatty acidsinhibited all lecithin biosynthetic activities (membrane-boundand soluble) measured here. These results are discussed in termsof a relative autonomy for the Golgi apparatus in cellular phospholipidbiosynthesis. Consequences for membrane-flow in plant cellsare briefly considered. Key words: Endoplasmic reticulum, fatty acids, Golgi apparatus, lecithin biosynthesis, maize roots, mitochondria  相似文献   

19.
The role of the Golgi apparatus and the Golgi-endoplasmic reticulum-lysosome complex (GERL) in the genesis of lysosomes was examined in differentiating and degenerating motor neurons of anuran larvae. Acid phosphatase, aryl sulfatase, and thiolacetic acid esterase were utilized as marker enzymes for the lysosomal system, while nucleoside diphosphatase and thiamine pyrophosphatase labeled the inner saccule(s) of the Golgi apparatus. Reduced osmium tetroxide was routinely deposited in the outer Golgi saccule regardless of the state of neuronal maturation. In all young neurons, the disposition of acid hydrolase reaction product paralleled the formation of GERL, with no lytic activity in the Golgi apparatus per se. Hypertrophy of the Golgi apparatus and GERL was observed in the early phases of degeneration, and both organelles apparently exhibit extensive hydrolytic activity. Dense bodies, autophagic vacuoles, and primary lysosomes were found arising from GERL, while the Golgi apparatus may produce primary lysosomal granules during regression. On the other hand, in differentiating neurons, hydrolytic activity was restricted to GERL and an occasional dense body and autophagic vacuole. These studies illustrate a parallelism between the development of GERL and genesis of primary and secondary lysosomes during neuronal cytodifferentiation, and implicate GERL and possibly the Golgi apparatus in lysosomal packaging in degenerating neurons.  相似文献   

20.
S Rasmussen  RA Dixon 《The Plant cell》1999,11(8):1537-1552
3H-l-Phenylalanine is incorporated into a range of phenylpropanoid compounds when fed to tobacco cell cultures. A significant proportion of (3)H-trans-cinnamic acid formed from (3)H-l-phenylalanine did not equilibrate with exogenous trans-cinnamic acid and therefore may be rapidly channeled through the cinnamate 4-hydroxylase (C4H) reaction to 4-coumaric acid. Such compartmentalization of trans-cinnamic acid was not observed after elicitation or in cell cultures constitutively expressing a bean phenylalanine ammonia-lyase (PAL) transgene. Channeling between PAL and C4H was confirmed in vitro in isolated microsomes from tobacco stems or cell suspension cultures. This channeling was strongly reduced in microsomes from stems or cell cultures of transgenic PAL-overexpressing plants or after elicitation of wild-type cell cultures. Protein gel blot analysis showed that tobacco PAL1 and bean PAL were localized in both soluble and microsomal fractions, whereas tobacco PAL2 was found only in the soluble fraction. We propose that metabolic channeling of trans-cinnamic acid requires the close association of specific forms of PAL with C4H on microsomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号