首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix metalloproteases (MMPs) play a role in remodeling the extracellular matrix during brain development and have been implicated in synaptic plasticity. Here, we report that a member of the neuronal pentraxin (NP) family, neuronal pentraxin receptor (NPR), undergoes regulated cleavage by the MMP tumor necrosis factor-alpha converting enzyme (TACE). NPR is enriched at excitatory synapses where it associates with AMPA-type glutamate receptors (AMPAR) and enhances synaptogenesis. However, in response to activation of group 1 mGluRs (mGluR1/5), TACE cleaves NPR and releases the pentraxin domain from its N-terminal transmembrane domain. Cleaved NPR rapidly accumulates in endosomes where it colocalizes with AMPAR. This process is necessary for mGluR1/5-dependent LTD in hippocampal and cerebellar synapses. These observations suggest that cleaved NPR functions to "capture" AMPAR for endocytosis and reveal a bifunctional role of NPs in both synapse strengthening and weakening.  相似文献   

2.
Excitatory transmission within hippocampal area CA3 stems from three major glutamatergic pathways: the perforant path formed by axons of layer II stellate cells in the entorhinal cortex, the mossy fiber axons originating from the dentate gyrus granule cells, and the recurrent axon collaterals of CA3 pyramidal cells. The synaptic communication of each of these pathways is modulated by metabotropic glutamate receptors that fine-tune the signal by affecting both the timing and strength of the connection. Within area CA3 of the hippocampus, group I mGluRs (mGluR1 and mGluR5) are expressed postsynaptically, whereas group II (mGluR2 and mGluR3) and III mGluRs (mGluR4, mGluR7, and mGluR8) are expressed presynaptically. Receptors from each group have been demonstrated to be required for different forms of pre- and postsynaptic long-term plasticity and also have been implicated in regulating short-term plasticity. A recent observation has demonstrated that a presynaptically expressed mGluR can affect the timing of action potentials elicited in the postsynaptic target. Interestingly, mGluRs can be distributed in a target-specific manner, such that synaptic input from one presynaptic neuron can be modulated by different receptors at each of its postsynaptic targets. Consequently, mGluRs provide a mechanism for synaptic specialization of glutamatergic transmission in the hippocampus. This review will highlight the variability in mGluR modulation of excitatory transmission within area CA3 with an emphasis on how these receptors contribute to the strength and timing of network activity within pyramidal cells and interneurons.  相似文献   

3.
Liu G  Choi S  Tsien RW 《Neuron》1999,22(2):395-409
To understand the elementary unit of synaptic communication between CNS neurons, one must know what causes the variability of quantal postsynaptic currents and whether unitary packets of transmitter saturate postsynaptic receptors. We studied single excitatory synapses between hippocampal neurons in culture. Focal glutamate application at individual postsynaptic sites evoked currents (I(glu)) with little variability compared with quantal excitatory postsynaptic currents (EPSCs). The maximal I(glu) was >2-fold larger than the median EPSC. Thus, variations in [glu]cleft are the main source of variability in EPSC size, and glutamate receptors are generally far from saturation during quantal transmission. This conclusion was verified by molecular antagonism experiments in hippocampal cultures and slices. The general lack of glutamate receptor saturation leaves room for increases in [glu]cleft as a mechanism for synaptic plasticity.  相似文献   

4.
The distribution of glutamate receptors in the monkey subthalamic nucleus was studied using affinity purified polyclonal antibodies to GluR1, phosphorylated GluR1, GluR2/3, NMDAR1, mGluR1a and mGluR5. Intense staining for both the unphosphorylated and the phosphorylated forms of the AMPA receptor subunit GluR1 was observed in the cell bodies and proximal dendrites of neurons in this nucleus. In comparison to GluR1, less intense staining for GluR2/3 was observed in the cell bodies and processes. NMDAR1 immunoreactivity was present in cell bodies and large numbers of small diameter dendrites. Light staining was observed in cell bodies with mGluR1a and no staining was observed on cell bodies with mGluR5. The neuropil, however, contained many processes that were labeled for mGluR1a or mGluR5. Electron microscopy showed that label was present in cytoplasmic locations in cell bodies and dendrites, in addition to components of the synaptic region, in sections stained for GluR1, GluR2/3 and NMDAR1. In contrast, very lightly labeled or unlabeled cell bodies but labeled dendrites and axon terminals, was observed in sections stained for mGluR1a and mGluR5. In addition to neural processes, occasional astrocytic processes were also labeled for mGluR5. Of the immunogold particles that were associated with components of the synaptic region, label for ionotropic glutamate receptors was mostly present on postsynaptic densities, whilst that for metabotropic glutamate receptors was mostly present in a perisynaptic location. The ratio of GluR1/GluR2 messenger RNAs has been reported to increase in the aged hippocampus (PAGLIUSI, S. R., GERRARD, P., ABDALLAH, M., TALABOT, D. & CATSICAS, S. (1994) Neuroscience 61, 429–433.), and it is possible that a similar change in the ratio of GluR1 and GluR2 may occur in neurons of the subthalamic nucleus with age. It is postulated that this could result an increase in calcium permeability via AMPA receptors, and an enhancement of excitatory transmission in this nucleus.  相似文献   

5.
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.  相似文献   

6.
The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C.?elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably,?a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents.  相似文献   

7.
The induction of long-term potentiation at CA3-CA1 synapses is caused by an N-methyl-d-aspartate (NMDA) receptordependent accumulation of intracellular Ca(2+), followed by Src family kinase activation and a positive feedback enhancement of NMDA receptors (NMDARs). Nevertheless, the amplitude of baseline transmission remains remarkably constant even though low frequency stimulation is also associated with an NMDAR-dependent influx of Ca(2+) into dendritic spines. We show here that an interaction between C-terminal Src kinase (Csk) and NMDARs controls the Src-dependent regulation of NMDAR activity. Csk associates with the NMDAR signaling complex in the adult brain, inhibiting the Src-dependent potentiation of NMDARs in CA1 neurons and attenuating the Src-dependent induction of long-term potentiation. Csk associates directly with Src-phosphorylated NR2 subunits in vitro. An inhibitory antibody for Csk disrupts this physical association, potentiates NMDAR mediated excitatory postsynaptic currents, and induces long-term potentiation at CA3-CA1 synapses. Thus, Csk serves to maintain the constancy of baseline excitatory synaptic transmission by inhibiting Src kinase-dependent synaptic plasticity in the hippocampus.  相似文献   

8.
The effects of voltage-operated potassium channel blockers on evoked excitatory synaptic transmission were studied in theCA1 subfield of rat hippocampal slices. Incubation with 50 μM 4-aminopyridine (n=27), 300 nM α-dendrotoxin (n=3), or 5 to 25 mM tetraethylammonium (n=7) resulted in an enhancement of the peak amplitude of excitatory postsynaptic currents (EPSC) and significant prolongation of their decay at strong stimuli, due to an increased contribution of NMDA receptors into EPSC. In five experiments, the presence of an AMPA receptor antagonist, 4-aminopyridine, led to the appearance of NMDA receptor-mediated field excitatory postsynaptic potentials (fEPSP). It is suggested that various modulations increasing presynaptic Ca2+ entry and, consequently, glutamate release may increase an NMDA component of synaptic transmission via excitation of polysynaptic excitatory pathways and/or due to glutamate spillover to distant extrasynaptic NMDA receptors.  相似文献   

9.
Abstract : The expression of glutamate receptor/subunit mRNAs was examined 3 weeks after discontinuing 1 week of daily injections of saline or cocaine. The level of mRNA for GluR1-4, NMDAR1, and mGluR5 receptors was measured with in situ hybridization and RT-PCR. In nucleus accumbens, acute cocaine treatment significantly reduced the mRNA level for GluR3, GluR4, and NMDAR1 subunits, whereas repeated cocaine reduced the level for GluR3 mRNA. Acute cocaine treatment also reduced the NMDAR1 mRNA level in dorsolateral striatum and ventral tegmental area. In prefrontal cortex, repeated cocaine treatment significantly increased the level of GluR2 mRNA. The GluR2 mRNA level was not changed by acute or repeated cocaine in any other brain regions examined. Repeated cocaine treatment also significantly increased mGluR5 mRNA levels in nucleus accumbens shell and dorsolateral striatum. Functional properties of the ionotropic glutamate receptors are determined by subunit composition. In addition, metabotropic glutamate receptors can modulate synaptic transmission and the response to stimulation of ionotropic receptors. Thus, the observed changes in levels of AMPA and NMDA receptor subunits and the mGluR5 metabotropic receptor may alter excitatory neurotransmission in the mesocorticolimbic dopamine system, which could play a significant role in the enduring biochemical and behavioral effects of cocaine.  相似文献   

10.
The brainstem locus coeruleus (LC), the primary norepinephrinergic (NE) nucleus in the brain, has been implicated in the abuse of drugs such as opioids. However, whether and how the LC-NE system is involved in cocaine addiction remains elusive. Here, we demonstrated cocaine-evoked synaptic plasticity of glutamatergic transmission onto LC neurons as one of the earliest traces occurring after a single injection of cocaine. Twenty-four hours after mice were injected intraperitoneally with cocaine, the evoked α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) mediated synaptic transmission onto LC neurons were strongly potentiated without major effect on N-methyl-d-aspartate receptor (NMDAR) mediated synaptic transmission. Compared with saline-pretreated mice, AMPAR-mediated excitatory postsynaptic currents (EPSCs) of cocaine-pretreated mice showed a marked inward rectification, demonstrating the insertion of GluR2-lacking AMPARs to plasma membrane. In addition, the single injection of cocaine did not affect presynaptic glutamate release probability measured by paired pulse ratio. Furthermore, we found that the cocaine-induced potentiation of AMPAR EPSCs could be blocked by prazosin, an inhibitor of α1-adrenoreceptor (AR), indicating that cocaine increases AMPAR transmission via α1-ARs. These results reveal that LC-NE serves as an initial target of drug intake.  相似文献   

11.
Without oxygen, all mammals suffer neuronal injury and excitotoxic cell death mediated by overactivation of the glutamatergic N-methyl-D-aspartate receptor (NMDAR). The western painted turtle can survive anoxia for months, and downregulation of NMDAR activity is thought to be neuroprotective during anoxia. NMDAR activity is related to the activity of another glutamate receptor, the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). AMPAR blockade is neuroprotective against anoxic insult in mammals, but the role of AMPARs in the turtle's anoxia tolerance has not been investigated. To determine whether AMPAR activity changes during hypoxia or anoxia in the turtle cortex, whole cell AMPAR currents, AMPAR-mediated excitatory postsynaptic potentials (EPSPs), and excitatory postsynaptic currents (EPSCs) were measured. The effect of AMPAR blockade on normoxic and anoxic NMDAR currents was also examined. During 60 min of normoxia, evoked peak AMPAR currents and the frequencies and amplitudes of EPSPs and EPSCs did not change. During anoxic perfusion, evoked AMPAR peak currents decreased 59.2 +/- 5.5 and 60.2 +/- 3.5% at 20 and 40 min, respectively. EPSP frequency (EPSP(f)) and amplitude decreased 28.7 +/- 6.4% and 13.2 +/- 1.7%, respectively, and EPSC(f) and amplitude decreased 50.7 +/- 5.1% and 51.3 +/- 4.7%, respectively. In contrast, hypoxic (Po(2) = 5%) AMPAR peak currents were potentiated 56.6 +/- 20.5 and 54.6 +/- 15.8% at 20 and 40 min, respectively. All changes were reversed by reoxygenation. AMPAR currents and EPSPs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In neurons pretreated with CNQX, anoxic NMDAR currents were reversibly depressed by 49.8 +/- 7.9%. These data suggest that AMPARs may undergo channel arrest in the anoxic turtle cortex.  相似文献   

12.
Group I metabotropic glutamate receptors (mGluRs) have been demonstrated to play a role in synaptic plasticity via a rapamycin-sensitive mRNA translation signaling pathway. Various growth factors can stimulate this pathway, leading to the phosphorylation and activation of mammalian target of rapamycin (mTOR), a serine/threonine protein kinase that modulates the activity of several translation regulatory factors, such as p70S6 kinase. However, little is known about the cellular and molecular mechanisms that bring the plastic changes of synaptic transmission after stimulation of group I mGluRs. Here, we investigated the role of the mTOR-p70S6K and the ERK1/2-p70S6K pathways in rat striatal and hippocampal synaptoneurosomes after group I mGluR stimulation. Our findings show that (S)-3,5-dihydroxyphenylglycine (DHPG) increases significantly the activation of mTOR and p70S6K (Thr389, controlled by mTOR) in both brain areas. The mTOR activation is dose-dependent and requires the stimulation of mGluR1 subtype receptors as for the p70S6K activation observed in striatum and hippocampus. In addition, the p70S6K (Thr421/Ser424) activation via the ERK1/2 activation is increased and involved also mGluR1 receptors. These results demonstrate that group I mGluRs are coupled to mTOR-p70S6K and ERK1/2-p70S6K pathways in striatal and hippocampal synaptoneurosomes. The translational factor p70S6K could be involved in the group I mGluRs-modulated synaptic efficacy.  相似文献   

13.
Glutamatergic synapse maturation is critically dependent upon activation of NMDA-type glutamate receptors (NMDARs); however, the contributions of NR3A subunit-containing NMDARs to this process have only begun to be considered. Here we characterized the expression of NR3A in the developing mouse forebrain and examined the consequences of NR3A deletion on excitatory synapse maturation. We found that NR3A is expressed in many subcellular compartments, and during early development, NR3A subunits are particularly concentrated in the postsynaptic density (PSD). NR3A levels dramatically decline with age and are no longer enriched at PSDs in juveniles and adults. Genetic deletion of NR3A accelerates glutamatergic synaptic transmission, as measured by AMPAR-mediated postsynaptic currents recorded in hippocampal CA1. Consistent with the functional observations, we observed that the deletion of NR3A accelerated the expression of the glutamate receptor subunits NR1, NR2A, and GluR1 in the PSD in postnatal day (P) 8 mice. These data support the idea that glutamate receptors concentrate at synapses earlier in NR3A-knockout (NR3A-KO) mice. The precocious maturation of both AMPAR function and glutamate receptor expression are transient in NR3A-KO mice, as AMPAR currents and glutamate receptor protein levels are similar in NR3A-KO and wildtype mice by P16, an age when endogenous NR3A levels are normally declining. Taken together, our data support a model whereby NR3A negatively regulates the developmental stabilization of glutamate receptors involved in excitatory neurotransmission, synaptogenesis, and spine growth.  相似文献   

14.
Recent evidence has emphasized the importance of p38 mitogen-activated protein kinase (MAPK) in the induction of metabotropic glutamate receptor (mGluR)-dependent long term depression (LTD) at hippocampal CA3-CA1 synapses. However, the cascade responsible of mGluR to activate p38 MAPK and the signaling pathway immediately downstream from it to induce synaptic depression is poorly understood. Here, we show that transient activation of group I mGluR with the selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) activates p38 MAPK through G protein betagamma-subunit, small GTPase Rap1, and MAPK kinase 3/6 (MKK3/6), thus resulting in mGluR5-dependent LTD. Furthermore, our data clearly show that an accelerating AMPA receptor endocytosis by stimulating the formation of guanyl nucleotide dissociation inhibitor-Rab5 complex is a potential downstream processing of p38 MAPK activation to mediate DHPG-LTD. These results suggest an important role for Rap1-MKK3/6-p38 MAPK pathway in the induction of mGluR-dependent LTD by directly coupling to receptor trafficking machineries to facilitate the loss of synaptic AMPA receptors.  相似文献   

15.
The number of synaptic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPARs) controls the strength of excitatory transmission. AMPARs cycle between internal endosomal compartments and the plasma membrane. Interactions between the AMPAR subunit GluR2, glutamate receptor interacting protein 1 (GRIP1), and the endosomal protein NEEP21 are essential for correct GluR2 recycling. Here we show that an about 85-kDa protein kinase phosphorylates GRIP1 on serine 917. This kinase is present in NEEP21 immunocomplexes and is activated in okadaic acid-treated neurons. Pulldown assays and atomic force microscopy indicate that phosphorylated GRIP shows reduced binding to NEEP21. AMPA or N-methyl-D-aspartate stimulation of hippocampal neurons induces delayed phosphorylation of the same serine 917. A wild type carboxy-terminal GRIP1 fragment expressed in hippocampal neurons interferes with GluR2 surface expression. On the contrary, a S917D mutant fragment does not interfere with GluR2 surface expression. Likewise, coexpression of GluR2 together with full-length wild type GRIP1 enhances GluR2 surface expression in fibroblasts, whereas full-length GRIP1-S917D had no effect. This indicates that this serine residue is implicated in AMPAR cycling. Our results identify an important regulatory mechanism in the trafficking of AMPAR subunits between internal compartments and the plasma membrane.  相似文献   

16.
Hypofunction of the N-methyl D-aspartate subtype of glutamate receptor (NMDAR) is hypothesized to be a mechanism underlying cognitive dysfunction in individuals with schizophrenia. For the schizophrenia-linked genes NRG1 and ERBB4, NMDAR hypofunction is thus considered a key detrimental consequence of the excessive NRG1-ErbB4 signaling found in people with schizophrenia. However, we show here that neuregulin 1β-ErbB4 (NRG1β-ErbB4) signaling does not cause general hypofunction of NMDARs. Rather, we find that, in the hippocampus and prefrontal cortex, NRG1β-ErbB4 signaling suppresses the enhancement of synaptic NMDAR currents by the nonreceptor tyrosine kinase Src. NRG1β-ErbB4 signaling prevented induction of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses and suppressed Src-dependent enhancement of NMDAR responses during theta-burst stimulation. Moreover, NRG1β-ErbB4 signaling prevented theta burst-induced phosphorylation of GluN2B by inhibiting Src kinase activity. We propose that NRG1-ErbB4 signaling participates in cognitive dysfunction in schizophrenia by aberrantly suppressing Src-mediated enhancement of synaptic NMDAR function.  相似文献   

17.
It is well documented that prolonged alteration of activity in neuronal networks initiates a number of homeostatic mechanisms including compensatory changes of excitatory and inhibitory synaptic strength. We studied whether this also evokes compensatory changes of short-term synaptic transmission. Using patch-clamp technique in hippocampal cell cultures we examined the effects: of prolonged decrease of neuronal firing evoked by sodium channel blocker: tetrodotoxin (TTX) and ionotropic glutamate receptor antagonist - kynurenate; prolonged enhancement ofneuronal firing evoked by antagonist GABAA receptors - bicuculline on short-term depression of GABAergic synaptic transmission evoked by train of stimuli (5 Hz). We found that both TTX and kynurenate treatments enhance depression of GABAergic transmission, while bicuculline treatment does not. We conclude that alteration of depression of GABAergic transmission evoked by the prolonged decrease of neuronal activity may contribute to homeostatic plasticity in hippocampal neuronal networks.  相似文献   

18.
While the spatiotemporal development of Tau pathology has been correlated with occurrence of cognitive deficits in Alzheimer's patients, mechanisms underlying these deficits remain unclear. Both brain‐derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB play a critical role in hippocampus‐dependent synaptic plasticity and memory. When applied on hippocampal slices, BDNF is able to enhance AMPA receptor‐dependent hippocampal basal synaptic transmission through a mechanism involving TrkB and N‐methyl‐d‐Aspartate receptors (NMDAR). Using THY‐Tau22 transgenic mice, we demonstrated that hippocampal Tau pathology is associated with loss of synaptic enhancement normally induced by exogenous BDNF. This defective response was concomitant to significant memory impairments. We show here that loss of BDNF response was due to impaired NMDAR function. Indeed, we observed a significant reduction of NMDA‐induced field excitatory postsynaptic potential depression in the hippocampus of Tau mice together with a reduced phosphorylation of NR2B at the Y1472, known to be critical for NMDAR function. Interestingly, we found that both NR2B and Src, one of the NR2B main kinases, interact with Tau and are mislocalized to the insoluble protein fraction rich in pathological Tau species. Defective response to BDNF was thus likely related to abnormal interaction of Src and NR2B with Tau in THY‐Tau22 animals. These are the first data demonstrating a relationship between Tau pathology and synaptic effects of BDNF and supporting a contribution of defective BDNF response and impaired NMDAR function to the cognitive deficits associated with Tauopathies.  相似文献   

19.
G Brasnjo  T S Otis 《Neuron》2001,31(4):607-616
Neuronal and glial isoforms of glutamate transporters show distinct distributions on membranes surrounding excitatory synapses, but specific roles for transporter subtypes remain unidentified. At parallel fiber (PF) synapses in cerebellum, neuronal glutamate transporters and metabotropic glutamate receptors (mGluRs) have overlapping postsynaptic distributions suggesting that postsynaptic transporters selectively regulate mGluR activation. We examined interactions between transporters and mGluRs by evoking mGluR-mediated excitatory postsynaptic currents (mGluR EPSCs) in slices of rat cerebellum. Selective inhibition of postsynaptic transporters enhanced mGluR EPSCs greater than 3-fold. Moreover, impairing glutamate uptake facilitated mGluR-dependent long-term depression at PF synapses. Our results demonstrate that uniquely positioned glutamate transporters strongly influence mGluR activation at cerebellar PF synapses. Postsynaptic glutamate uptake may serve as a general mechanism for regulating mGluR-initiated synaptic depression.  相似文献   

20.
Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号