首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A continuous-flow mixing device with a dead time of 100 micros coupled with intrinsic tryptophan and 1-anilinonaphthalene-8-sulfonate (ANS) fluorescence was used to monitor structure formation during early stages of the folding of staphylococcal nuclease (SNase). A variant with a unique tryptophan fluorophore in the N-terminal beta-barrel domain (Trp76 SNase) was obtained by replacing the single Trp140 in wild-type SNase with His in combination with Trp substitution of Phe76. A common background of P47G, P117G and H124L mutations was chosen in order to stabilize the protein and prevent accumulation of cis proline isomers under native conditions. In contrast to WT(*) SNase, which shows no changes in tryptophan fluorescence prior to the rate-limiting folding step ( approximately 100 ms), the F76W/W140H variant shows additional changes (enhancement) during an early folding phase with a time constant of 75 micros. Both proteins exhibit a major increase in ANS fluorescence and identical rates for this early folding event. These findings are consistent with the rapid accumulation of an ensemble of states containing a loosely packed hydrophobic core involving primarily the beta-barrel domain while the specific interactions in the alpha-helical domain involving Trp140 are formed only during the final stages of folding. The fact that both variants exhibit the same number of kinetic phases with very similar rates confirms that the folding mechanism is not perturbed by the F76W/W140H mutations. However, the Trp at position 76 reports on the rapid formation of a hydrophobic cluster in the N-terminal beta-sheet region while the wild-type Trp140 is silent during this early stage of folding. Quantitative modeling of the (un)folding kinetics and thermodynamics of these two proteins versus urea concentration revealed that the F76W/W140H mutation selectively destabilizes the native state relative to WT(*) SNase while the stability of transient intermediates remains unchanged, leading to accumulation of intermediates under equilibrium conditions at moderate denaturant concentrations.  相似文献   

2.
Nishimura C  Uversky VN  Fink AL 《Biochemistry》2001,40(7):2113-2128
The stability and folding kinetics of wild-type and a mutant staphylococcal nuclease (SNase) at neutral pH are significantly perturbed by the presence of moderate to high concentrations of salts. Very substantial increases in stability toward thermal and urea denaturation were observed; for example, 0.4 M sodium sulfate increased the free energy of wild-type SNase by more than 2 kcal/mol. For the NCA SNase mutant, the presence of the salts abolished the cold denaturation observed at neutral pH with this variant, and substantially increased its stability. Significant effects of salts on the kinetics of refolding were also observed. For NCA SNase, the presence of the salts markedly increased the folding rates (up to 5-fold). On the other hand, chloride, in particular, substantially decreased the rate of folding of the wild-type protein. Since the rates of the slow phases due to proline isomerization were increased by salt, these steps must be coupled to conformational processes. Fluorescence energy transfer between the lone tryptophan (Trp140) and an engineered fluorescent acceptor at residue 64 revealed that the addition of a high concentration of KCl led to the formation of a transient folding intermediate not observed at lower salt concentrations, and in which residues 140 and 64 were much closer than in the native state. The salt-induced effects on the kinetics of folding are attributed to the enhanced stability of the transient folding intermediates. It is likely that the combination of the high net charge, due to the high isoelectric point, and the relatively low intrinsic hydrophobicity, leads to staphylococcal nuclease having only marginal stability at neutral pH. The salt-induced effects on the structure, stability, and kinetics of staphylococcal nuclease are attributed to the binding of counterions, namely, anions, resulting in minimization of intramolecular electrostatic repulsion. This leads to increased stability, more structure, and greater compactness, as observed. Consequently, localized electrostatic repulsion is present at neutral pH in SNase, probably contributing to its marginal stability. The results suggest that, in general, marginally stable globular proteins will be significantly stabilized by salts under conditions where they have a substantial net charge.  相似文献   

3.
To monitor the development of tertiary structural contacts during folding, a unique tryptophan residue was introduced at seven partially buried locations (residues 15, 27, 61, 76, 91, 102 and 121) of a tryptophan-free variant of staphylococcal nuclease (P47G/P117G/H124L/W140H). Thermal unfolding measurements by circular dichroism indicate that the variants are destabilized, but maintain the ability to fold into a native-like structure. For the variants with Trp at positions 15, 27 and 61, the intrinsic fluorescence is significantly quenched in the native state due to close contact with polar side-chains that act as intramolecular quenchers. All other variants exhibit enhanced fluorescence under native conditions consistent with burial of the tryptophan residues in an apolar environment. The kinetics of folding was observed by continuous and stopped-flow fluorescence measurements over refolding times ranging from 100 micros to 10 s. The folding kinetics of all variants is quantitatively described by a mechanism involving a major pathway with a series of intermediate states and a minor parallel channel. The engineered tryptophan residues in the beta-barrel and the N-terminal part of the alpha-helical domain become partially shielded from the solvent at an early stage (<1 ms), indicating that this region undergoes a rapid collapse. For some variants, a major increase in fluorescence coincides with the rate-limiting step of folding on the 100 ms time scale, indicating that these tryptophan residues are buried only during the late stages of folding. Other variants exhibit a transient increase in fluorescence during the 10 ms phase followed by a decrease during the rate-limiting phase. These observations are consistent with burial of these probes in a collapsed, but loosely packed intermediate, followed by the rate-limiting formation of the densely packed native core, which brings the tryptophan residues into close contact with intramolecular quenchers.  相似文献   

4.
Xie T  Liu D  Feng Y  Shan L  Wang J 《Biophysical journal》2007,92(6):2090-2107
Folding stability and cooperativity of the three forms of 1-110 residues fragment of staphylococcal nuclease (SNase110) have been studied by various biophysical and NMR methods. Samples of G-88W- and V-66W-mutant SNase110, namely G-88W110 and V-66W110, in aqueous solution and SNase110 in 2.0 M TMAO are adopted in this study. The unfolding transitions and folded conformations of the three SNase fragments were detected by far- and near-ultraviolet circular dichroism and intrinsic tryptophan fluorescence measurements. The tertiary structures and internal motions of the fragments were determined by NMR spectroscopy. Both G-88W and V-66W single mutations as well as a small organic osmolyte (Trimethylamine N-oxide, TMAO) can fold the fragment into a native-like conformation. However, the tertiary structures of the three fragments exhibit different degrees of folding stability and compactness. G-88W110 adopts a relatively rigid structure representing a most stable native-like beta-subdomain conformation of the three fragments. V-66W110- and TMAO-stabilized SNase110 produce less compact structures having a less stable "beta-barrel" structural region. The different folding status accounts for the different backbone dynamic and urea-unfolding transition features of the three fragments. The G-20I/G-29I-mutant variants of the three fragments have provided the evidence that the folding status is correlated closely to the packing of the beta-strands in the beta-barrel of the fragments. The native-like beta-barrel structural region acts as a nonlocal nucleus for folding the fragment. The tertiary folding of the three fragments is initiated by formation of the local nucleation sites at two beta-turn regions, I-18-D-21 and Y-27-Q-30, and developed by the formation of a nonlocal nucleation site at the beta-barrel region. The formation of beta-barrel and overall structure is concerted, but the level of cooperativity is different for the three 1-110 residues SNase fragments.  相似文献   

5.
The refolding reaction of S54G/P55N ribonuclease T1 is a two-step process, where fast formation of a partly folded intermediate is followed by the slow reaction to the native state, limited by a trans --> cis isomerization of Pro39. The hydrodynamic radius of this kinetic folding intermediate was determined by real-time diffusion NMR spectroscopy. Its folding to the native state was monitored by a series of 128 very fast 2D (15)N-HMQC spectra, to observe the kinetics of 66 individual backbone amide probes. We find that the intermediate is as compact as the native protein with many native chemical shifts. All 66 analyzed amide probes follow the rate-limiting prolyl isomerization, which indicates that this cooperative refolding reaction is fully synchronized. The stability of the folding intermediate was determined from the protection factors of 45 amide protons derived from a competition between refolding and H/D exchange. The intermediate has already gained 40% of the Gibbs free energy of refolding with many protected amides in not-yet-native regions.  相似文献   

6.
We have defined the structural and dynamic properties of an early folding intermediate of beta-lactoglobulin known to contain non-native alpha-helical structure. The folding of beta-lactoglobulin was monitored over the 100 micros--10 s time range using ultrarapid mixing techniques in conjunction with fluorescence detection and hydrogen exchange labeling probed by heteronuclear NMR. An initial increase in Trp fluorescence with a time constant of 140 micros is attributed to formation of a partially helical compact state. Within 2 ms of refolding, well protected amide protons indicative of stable hydrogen bonded structure were found only in a domain comprising beta-strands F, G and H, and the main alpha-helix, which was thus identified as the folding core of beta-lactoglobulin. At the same time, weak protection (up to approximately 10-fold) of amide protons in a segment spanning residues 12--21 is consistent with formation of marginally stable non-native alpha-helices near the N-terminus. Our results indicate that efficient folding, despite some local non-native structural preferences, is insured by the rapid formation of a native-like alpha/beta core domain.  相似文献   

7.
F Schmid  H Blaschek 《Biochemistry》1984,23(10):2128-2133
Folding of bovine pancreatic ribonuclease A (RNase A) is a sequential process which involves the formation of well-populated structural intermediates under suitable conditions. Two intermediates have been detected on the major slow-refolding pathway of RNase A: a late intermediate (IN) which already resembles the native protein in a number of properties and a rapidly formed early intermediate (I1) which shows extensive hydrogen-bonded secondary structure. Here competition experiments between refolding and proteolytic cleavage of the peptide chain are described which yield information about the decrease in accessibility of particular proteolytic cleavage sites during the folding process. Results obtained with pepsin as a proteolytic probe of folding indicate that the primary cleavage site for pepsin, Phe-120-Asp-121, becomes inaccessible early in the course of refolding, if folding is carried out under conditions which effectively stabilize the native state. Under marginally stable conditions, folding is very slow, and protection against peptic cleavage is not detectable prior to the final formation of native protein. The comparison with amide proton exchange experiments suggests that the protection against peptic cleavage occurs during the formation and/or stabilization of hydrogen-bonded secondary structure in the early intermediate (I1). We conclude that the carboxy-terminal region of the RNase peptide chain, which is known to be important for the stability of the folded protein, may also be relevant for early steps of refolding.  相似文献   

8.
The F helix region of sperm whale apomyoglobin is disordered, undergoing conformational fluctuations between a folded helical conformation and one or more locally unfolded states. To examine the effects of F helix stabilization on the folding pathway of apomyoglobin, we have introduced mutations to augment intrinsic helical structure in the F helix of the kinetic folding intermediate and to increase its propensity to fold early in the pathway, using predictions based on plots of the average area buried upon folding (AABUF) derived from the primary sequence. Two mutant proteins were prepared: a double mutant, P88K/S92K (F2), and a quadruple mutant, P88K/A90L/S92K/A94L (F4). Whereas the AABUF for F2 predicts that the F helix will not fold early in the pathway, the F helix in F4 shows a significantly increased AABUF and is therefore predicted to fold early. Protection of amide protons by formation of hydrogen-bonded helical structure during the early folding events has been analyzed by pH-pulse labeling. Consistent with the AABUF prediction, many of the F helix residues for F4 are significantly protected in the kinetic intermediate but are not protected in the F2 mutant. F4 folds via a kinetically trapped burst-phase intermediate that contains stabilized secondary structure in the A, B, F, G, and H helix regions. Rapid folding of the F helix stabilizes the central core of the misfolded intermediate and inhibits translocation of the H helix back to its native position, thereby decreasing the overall folding rate.  相似文献   

9.
The proposed kinetic folding mechanism of the alpha-subunit of tryptophan synthase (alphaTS), a TIM barrel protein, displays multiple unfolded and intermediate forms which fold through four parallel pathways to reach the native state. To obtain insight into the secondary structure that stabilizes a set of late, highly populated kinetic intermediates, the refolding of urea-denatured alphaTS from Escherichia coli was monitored by pulse-quench hydrogen exchange mass spectrometry. Following dilution from 8 M urea, the protein was pulse-labeled with deuterium, quenched with acid and mass analyzed by electrospray ionization mass spectrometry (ESI-MS). Hydrogen bonds that form prior to the pulse of deuterium offer protection against exchange and, therefore, retain protons at the relevant amide bonds. Consistent with the proposed refolding model, an intermediate builds up rapidly and decays slowly over the first 100 seconds of folding. ESI-MS analysis of the peptic fragments derived from alphaTS mass-labeled and quenched after two seconds of refolding indicates that the pattern of protection of the backbone amide hydrogens in this transient intermediate is very similar to that observed previously for the equilibrium intermediate of alphaTS highly populated at 3 M urea. The protection observed in a contiguous set of beta-strands and alpha-helices in the N terminus implies a significant role for this sub-domain in directing the folding of this TIM barrel protein.  相似文献   

10.
Studies of conformational features of fragments SNase(111-143) and SNase(118-143) and segment E122-K136 in 1-139 fragment (SNase139) suggest that the high intrinsic helical propensity can drive segment E122-K136 fold into a stable helix only when the segments V111-H121 and L137-D143 flanked on segment E122-K136 in staphylococcal nuclease (SNase) have stable folding.  相似文献   

11.
Rapid molecular collapse mediated by nonlocal interactions is believed to be a crucial event for protein folding. To investigate the role of nonlocal interactions in tertiary structure formation, we performed a nonlocal interaction substitution mutation analysis on staphylococcal nuclease (SNase). Y54 and I139 of wild-type (WT) SNase and Δ140-149 were substituted by cysteine to form intramolecular disulfide bonds, respectively called WT-SS and Δ140-149-SS. Under physiological conditions, the reduced form of Δ140-149-SS appears to assume a denatured structure; in contrast, the oxidized form of Δ140-149-SS forms a native-like structure. From this result, we conclude that the C-terminal region participates in a nonlocal interaction that is indispensable for the native structure. Although the oxidized form of WT-SS assumes a more compact denatured structure under acidic conditions than the WT, the kinetic measurements reveal that the refolding reactions of both the reduced and oxidized forms of WT-SS are similar to those of the WT, suggesting that an intact nonlocal interaction is established within the dead time (22 ms). On the basis of these results, we propose that the native nonlocal contact established at the early stage of the folding process facilitates further secondary structure formation.  相似文献   

12.
The development of tertiary structure during folding of staphylococcal nuclease (SNase) was studied by time‐resolved fluorescence resonance energy transfer measured using continuous‐ and stopped‐flow techniques. Variants of this two‐domain protein containing intradomain and interdomain fluorescence donor/acceptor pairs (Trp and Cys‐linked fluorophore or quencher) were prepared to probe the intradomain and interdomain structural evolution accompanying SNase folding. The intra‐domain donor/acceptor pairs are within the β‐barrel domain (Trp27/Cys64 and Trp27/Cys97) and the interdomain pair is between the α‐helical domain and the β‐barrel domain (Trp140/Cys64). Time‐resolved energy transfer efficiency accompanying folding and unfolding at different urea concentrations was measured over a time range from 30 μs to ~10 s. Information on average donor/acceptor distances at different stages of the folding process was obtained by using a quantitative kinetic modeling approach. The average distance for the donor/acceptor pairs in the β‐barrel domain decreases to nearly native values whereas that of the interdomain donor/acceptor pairs remains unchanged in the earliest intermediate (<500 μs of refolding). This indicates a rapid nonuniform collapse resulting in an ensemble of heterogeneous conformations in which the central region of the β‐barrel domain is well developed while the C‐terminal α‐helical domain remains disordered. The distance between Trp140 and Cys64 decreases to native values on the 100‐ms time scale, indicating that the α‐helical domain docks onto the preformed β‐barrel at a late stage of the folding. In addition, the unfolded state is found to be more compact under native conditions, suggesting that changes in solvent conditions may induce a nonspecific hydrophobic collapse.  相似文献   

13.
Panick G  Winter R 《Biochemistry》2000,39(7):1862-1869
In this paper, we illustrate the use of high-pressure Fourier transform infrared (FT-IR) spectroscopy to study the reversible presssure-induced unfolding and refolding of ribonuclease A (RNase A) and compare it with the results obtained for the temperature-induced transition. FT-IR spectroscopy monitors changes in the secondary structural properties (amide I' band) or tertiary contacts (tyrosine band) of the protein upon pressurization or depressurization. Analysis of the amide I' spectral components reveals that the pressure-induced denaturation process sets in at 5. 5 kbar at 20 degrees C and pH 2.5. It is accompanied by an increase in disordered structures while the content of beta-sheets and alpha-helices drastically decreases. The denatured state above 7 kbar retains nonetheless some degree of beta-like secondary structure and the molecule cannot be described as an extended random coil. Increase of pH from 2.5 to 5.5 has no influence on the structure of the pressure-denatured state; it slightly changes the stability of the protein only. All experimental evidence indicates that the pressure-denatured states of monomeric proteins have more secondary structure than the temperature-denatured states. Different modes of denaturation, including pressure, may correlate differently with the roughness of the energy scale and slope of the folding funnel. For these reasons we have also carried out pressure-jump kinetic studies of the secondary structural evolution in the unfolding/refolding reaction of RNase A. In agreement with the theoretical model presented by Hummer et al. [(1998) Proc. Natl. Acad. Sci. U.S.A. 95, 1552-1555], the experimental data show that pressure slows down folding and unfolding kinetics (here 1-2 orders of magnitude), corresponding to an increasingly rough landscape. The kinetics remains non-two-state under pressure. Assuming a two-step folding scenario, the calculated relaxation times for unfolding of RNase A at 20 degrees C and pH 2.5 can be estimated to be tau(1) approximately 0.7 min and tau(2) approximately 17 min. The refolding process is considerably faster (tau(1) approximately 0.3 min, tau(2) approximately 4 min). Our data show that the pressure stability and pressure-induced unfolding/refolding kinetics of monomeric proteins, such as wild-type staphylococcal nuclease (WT SNase) and RNase A, may be significantly different. The differences are largely due to the four disulfide bonds in RNase A, which stabilize adjacent structures. They probably lead to the much higher denaturation pressure compared to SNase, and this might also explain why the volume change of WT SNase upon unfolding is about twice as large.  相似文献   

14.
Recently the folding of a staphylococcal nuclease (P117G) variant was examined with the hydrogen-deuterium (H-D) exchange technique. Many of the residues that showed significant protection are located in protection are located in β-sheet regions. About half the residues protected belong to an antiparallel β-hairpin structure (residues 21–35) in the native structure. The β-hairpin structure is formed by strands 2 and 3 of sheet 2 connected by the sequence27 Y KGQP31 in a type I′ reverse turn conformation with a 4 → 1 hydrogen bonding between Q30 NH and Y27 C=O. We have targeted the conformational characterization of the peptide model Ac-YKGQP-NH2 with 1II two-dimensional nmr techniques in aqueous solution with a view to assessing its propensity to sample turn conformational forms and thus initiate the formation of β-hairpin structure. Based upon the observed dαn (i, i + 1), dαn (i, i + 3), and dnn (i, i + 1) nuclear Overhauser effect connectivities, temperature coefficients for amide protons and conformational analysis with quantum mechanical perturbative configuration interaction over localized orbitals method, we conclude that the model peptide samples turn conformational forms with reduced conformational entropy. We suggest that the turn can nucleate the formation of the β-hairpin structure in the refolding of nuclease. Observation of turn propensity for this sequence is consistent with the folding mechanism of the Greek key motif (present in Staphylococcal nuclease) proposed in the literature. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
Two monoclonal antibodies specific for staphylococcal nuclease R (SNase R) (McAb2C9 and McAb1B8) were prepared and used to probe protein folding during peptide elongation, by measuring antibody binding to seven N-terminal fragments (SNR141, SNR135, SNR121, SNR110, SNR102, SNR79 and SNR52) of SNase R. Comparative studies of the conformations of the N-terminal fragments have shown that all seven fragments of SNase R have a certain amount of residual structure, indicating that folding may occur during elongation of the nascent peptide chain. We show that the binding abilities of the intact enzyme and its seven fragments to the monoclonal antibodies are not simply proportional to the length of the peptide chain, suggesting that there may be continuous conformational adjustment in the nascent peptide chain as new C-terminal amino acids are added. A folding intermediate close in structure to the native state but with structural features in common with SNR121 is highly populated in 0.6 M GuHCl, and is also formed transiently during folding.  相似文献   

16.
H Roder  K Wüthrich 《Proteins》1986,1(1):34-42
A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin (J. Mol. Biol. 135: 199-215, 1979), which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes.  相似文献   

17.
Hydrogen-exchange rates for an OB-fold subdomain fragment of staphylococcal nuclease have been measured at pH 4.7 and 4 degrees C, conditions close to the minimum of acid/base catalyzed exchange. The strongest protection from solvent exchange is observed for residues from a five-stranded beta-barrel in the NMR structure of the protein. Protection factors, calculated from the experimental hydrogen-exchange rates, range between 1 and 190. Similarly small protection factors have in many cases been attributed to "molten globule" conformations that are supposed to lack a specific tertiary structure. The present results suggest that marginal protection from solvent exchange does not exclude well-defined structure.  相似文献   

18.
Tsong TY  Hu CK  Wu MC 《Bio Systems》2008,93(1-2):78-89
Despite several decades of intense study, protein folding problem remains elusive. In this paper, we review current knowledge and the prevailing thinking in the field, and summarize our work on the in vitro folding of a typical small globular protein, staphylococcal nuclease (SNase). Various thermodynamic and kinetic methods have been employed to determine the energetic and construct the energy landscape of folding. Data presented include, but not limit to, the identification of intermediate states, time courses of their spread and convergence on the landscape, and finally the often ignored step, the refinement of the overall conformation and hence the activation of the enzyme. Our goal is to have a complete perspective of the folding process starting from its initial unfolded state to the fully active native state. Analysis leads to these findings: the folding starts with the condensation of the hydrophobic side chains in different locales of the peptide chain. The newly forged hydrophobic environment facilitates formation of helix- and sheet-like frameworks at different domains. Consolidation and inter-docking of these frameworks or domains then stabilizes the overall conformation and refines the structure to activate the enzyme. Based on these observations we favor folding-by-parts and propose a modular assembly model for the in vitro folding of SNase.  相似文献   

19.
Fluorescence resonance energy transfer (FRET) is one of the few methods available to measure the rate at which a folding protein collapses. Using staphylococcal nuclease in which a cysteine residue was engineered in place of Lys64, permitted FRET measurements of the distance between the donor tryptophan 140 and 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonic acid-labeled Cys64. These measurements were undertaken on both equilibrium partially folded intermediates at low pH (A states), as well as transient intermediates during stopped-flow refolding. The results indicate that there is an initial collapse of the protein in the deadtime of the stopped-flow instrument, corresponding to a regain of approximately 60% of the native signal, followed by three slower transients. This is in contrast to circular dichroism measurements which show only 20-25% regain of the native secondary structure in the burst phase. Thus hydrophobic collapse precedes the formation of substantial secondary structure. The first two detected transient intermediate species have FRET properties essentially identical with those of the previously characterized equilibrium A state intermediates, suggesting similar structures between the equilibrium and transient intermediates.The effects of anions on the folding of acid-unfolded staphylococcal nuclease, and urea on the unfolding of the resulting A states, indicates that in folding the protein becomes compact prior to formation of major secondary structure, whereas in unfolding the protein expands prior to major loss of secondary structure. Comparison of the kinetics of refolding of staphylococcal nuclease, monitored by FRET, and for a proline-free variant, indicate that folding occurs via two partially folded intermediates leading to a native-like species with one (or more) proline residues in a non-native conformation. For the A states an excellent correlation between compactness measured by FRET, and compactness determined from small-angle X-ray scattering, was observed. Further, a linear relationship between compactness and free energy of unfolding was noted. Formation of soluble aggregates of the A states led to dramatic enhancement of the FRET, consistent with intermolecular fluorescence energy transfer.  相似文献   

20.
The hydrogen exchange behavior of exchangeable protons in proteins can provide important information for understanding the principles of protein structure and function. The positions and exchange rates of the slowly-exchanging amide protons in sperm whale myoglobin have been mapped using 15N-1H NMR spectroscopy. The slowest-exchanging amide protons are those that are hydrogen bonded in the longest helices, including members of the B, E, and H helices. Significant protection factors were observed also in the A, C, and G helices, and for a few residues in the D and F helices. Knowledge of the identity of slowly-exchanging amide protons forms the basis for the extensive quench-flow kinetic folding experiments that have been performed for myoglobin, and gives insights into the tertiary interactions and dynamics in the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号