共查询到20条相似文献,搜索用时 0 毫秒
1.
Yin X Baek RC Kirschner DA Peterson A Fujii Y Nave KA Macklin WB Trapp BD 《The Journal of cell biology》2006,172(3):469-478
The central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when a tetraspan membrane protein, myelin proteolipid protein (PLP), replaced the type I integral membrane protein, P0, as the major protein of myelin. To investigate possible reasons for this molecular switch, we genetically engineered mice to express P0 instead of PLP in CNS myelin. In the absence of PLP, the ancestral P0 provided a periodicity to mouse compact CNS myelin that was identical to mouse PNS myelin, where P0 is the major structural protein today. The PLP-P0 shift resulted in reduced myelin internode length, degeneration of myelinated axons, severe neurological disability, and a 50% reduction in lifespan. Mice with equal amounts of P0 and PLP in CNS myelin had a normal lifespan and no axonal degeneration. These data support the hypothesis that the P0-PLP shift during vertebrate evolution provided a vital neuroprotective function to myelin-forming CNS glia. 相似文献
2.
Abstract— The amino acid composition of human, monkey and bovine centrum ovale myelin, of bovine optic nerve myelin, and of bovine spinal cord white matter myelin has been determined. In general, the amino acid patterns of the centrum ovale myelin of these species and the optic nerve myelin are identical. Differences are noted when these are compared to the spinal cord white matter myelin. It is shown that the amino acid composition of myelin cannot be duplicated by any combination of the Folch–Lees proteolipid protein and the basic protein fraction of myelin. It is necessary to postulate the existence of a third protein fraction that is rich in dicarboxylic amino acids. 相似文献
3.
—A developmental study of the lipid and protein composition of human CNS myelin was undertaken. The relative concentrations of the major lipid classes, cholesterol, glycolipids and phospholipids exhibited little change except for a modest decrease in the concentration of the phospholipids. In contrast to the total phospholipids, marked variations in the relative concentrations of individual phospholipids were found. Sphingomyelin increased over two-fold, and phosphatidyl choline decreased to almost half its original concentration. While the concentration of total myelin protein remained constant during maturation, variations in the concentrations of individual proteins were observed. Basic protein constituted 8·5 per cent of the total myelin proteins in the newborn brain and increased to about 30 per cent of the protein in the older ages. The concentrations of proteolipid protein and DM-20 seemed to increase with age, while the relative amounts of high molecular weight proteins decreased. The presence of myelin basic protein in newborn human brain was confirmed by electrophoretic studies involving several different polyacrylamide gel systems and by immunodiffusion experiments which showed a reaction of identity between a constituent present in the fraction containing the presumptive myelin basic protein and authentic myelin basic protein isolated from adult human brain. 相似文献
4.
A membrane receptor for gangliosides is associated with central nervous system myelin 总被引:5,自引:0,他引:5
A binding protein specific for major neuronal gangliosides was detected on rat brain membranes using a synthetic ganglioside-protein conjugate, 125I-(GT1b)4BSA (bovine serum albumin derivatized with 4 mol of ganglioside GT1b/mol of protein), as a radioligand. Specific binding of the ligand displayed marked regional variation within the brain, with white matter-enriched regions demonstrating the highest binding activity. Autoradiographic localization of 125I-(GT1b)4BSA binding to tissue sections revealed selective association with myelinated pathways throughout the brain. The ligand also bound preferentially to brain subcellular fractions enriched in myelin, even after removal of axolemma. In contrast, peripheral nerve myelin had little binding activity. The myelin-associated ganglioside receptor detected by 125I-(GT1b)4BSA binding appears to be a novel oligodendroglial membrane protein which preferentially recognizes neuronal gangliosides. 相似文献
5.
6.
Purified myelin fractions from the central nervous system contain one major myelin-associated glycoprotein and approximately 16 minor glycoproteins. While the genuine association of the major myelin-associated glycoprotein with the oligodendroglial myelin unit is demonstrated, the possibility exists that several of the minor glycoproteins have their origin in contaminating membranes not related to myelin. The major myelin-associated glycoprotein is probably not present in compacted myelin, but immunocytochemical and subfractionation studies indicate that it is confined to the periaxonal and paranodal region of the myelin sheath. In experimental demyelination and multiple sclerosis, the major glycoprotein is the first myelin constituent to be affected. Its localization on the membrane surface where myelin and axolemma are in close contact, and other indirect evidence indicate that the major glycoprotein, and possibly other myelin-associated glycoproteins, could play a role in the process of myelination and myelin maintenance. 相似文献
7.
Opalin, a transmembrane sialylglycoprotein located in the central nervous system myelin paranodal loop membrane 总被引:1,自引:0,他引:1
Yoshikawa F Sato Y Tohyama K Akagi T Hashikawa T Nagakura-Takagi Y Sekine Y Morita N Baba H Suzuki Y Sugano S Sato A Furuichi T 《The Journal of biological chemistry》2008,283(30):20830-20840
In contrast to compact myelin, the series of paranodal loops located in the outermost lateral region of myelin is non-compact; the intracellular space is filled by a continuous channel of cytoplasm, the extracellular surfaces between neighboring loops keep a definite distance, but the loop membranes have junctional specializations. Although the proteins that form compact myelin have been well studied, the protein components of paranodal loop membranes are not fully understood. This report describes the biochemical characterization and expression of Opalin as a novel membrane protein in paranodal loops. Mouse Opalin is composed of a short N-terminal extracellular domain (amino acid residues 1-30), a transmembrane domain (residues 31-53), and a long C-terminal intracellular domain (residues 54-143). Opalin is enriched in myelin of the central nervous system, but not that of the peripheral nervous system of mice. Enzymatic deglycosylation showed that myelin Opalin contained N- and O-glycans, and that the O-glycans, at least, had negatively charged sialic acids. We identified two N-glycan sites at Asn-6 and Asn-12 and an O-glycan site at Thr-14 in the extracellular domain. Site-directed mutations at the glycan sites impaired the cell surface localization of Opalin. In addition to the somata and processes of oligodendrocytes, Opalin immunoreactivity was observed in myelinated axons in a spiral fashion, and was concentrated in the paranodal loop region. Immunogold electron microscopy demonstrated that Opalin was localized at particular sites in the paranodal loop membrane. These results suggest a role for highly sialylglycosylated Opalin in an intermembranous function of the myelin paranodal loops in the central nervous system. 相似文献
8.
Peptides according to amino-acid sequences of the N- and C-terminus of lipophilin (proteolipid protein, PLP) (Gly1-Phe15 = 1; Thr261-Phe276 = 6) and of the other four hydrophilic domains (Glu37-Leu60 = 2; Arg97-Leu112 = 3; Gly119-Gly127 = 3A; Trp144-Tyr156 = 3B; Lys191-Ala203 = 4; Asn222-Phe232 = 5) have been synthesized by the solid-phase Fmoc method, linked covalently to keyhole limpet hemocyanin (KLH) and used as antigens. Monospecific antibodies against these antigens were isolated by affinity chromatography. Each antibody recognized its epitope in isolated partially delipidated PLP with the ELISA technique, western blot, thin sections of paraffin embedded rat brains and in the plasma membrane of appropriately fixed/permeabilized rat oligodendrocytes in culture. After fixation with formaldehyde antipeptide 3A antibody stained intact non-permeabilized cells. Therefore the epitope 3A must be located on the extracellular surface of the membrane. This is in full support of our previous biochemical results on the orientation of lipophilin in the myelin membrane. 相似文献
9.
Evolution of the MIP family of integral membrane transport proteins 总被引:17,自引:0,他引:17
G. M. Pao L.-F. Wu K. D. Johnson H. Höfte M. J. Chrispeels G. Sweet N. N. Sandal M. H. Saier Jr 《Molecular microbiology》1991,5(1):33-37
Six integral membrane proteins of bacterial, animal, and plant origin, which are believed to function in solute transport, share sequence identity and are grouped together as members of the MIP family. These include the Escherichia coli glycerol facilitator, the major intrinsic protein from bovine lens fibre junction membranes, a plant tonoplast membrane protein, a soybean protein from the peribacteroid membrane, and a Drosophila neurogenic protein. These proteins, each of which appears to consist of six transmembrane helical segments per subunit, apparently arose by internal duplication of a three-transmembrane segment. Phylogenetic‘trees’interrelating these proteins and segments are presented. 相似文献
10.
11.
Abstract— A method for the isolation of peripheral nerve myelin is described. Peripheral nerve myelin differs from centrum ovale myelin in its amino acid composition, in that it contains a greater proportion of protein that is digestible with trypsin and pepsin, and in the insolubility of its proteins in chloroform–methanol. 相似文献
12.
13.
Separation of the major proteins of central and peripheral nervous system myelin using reversed-phase high-performance liquid chromatography 总被引:2,自引:0,他引:2
A general method to separate the major proteins of rat central and peripheral nervous system myelin has been developed. The key step is the initial quantitative removal of the lipids under conditions where the proteins retain their solubility in HPLC solvents. Lipids are removed by a combination of solvent extraction and column chromatography on Sephadex LH-60 in 2-chloroethanol:10 mM HCl (9:1). Proteins are then separated by reversed-phase (RP) HPLC. Samples are applied to a wide pore reversed-phase C-3 column and eluted with a linear gradient of 10-70% 1-propanol in 0.1% trifluoroacetic acid (0-100% B) over a 60-min period. Myelin basic proteins elute between 25 and 30% B, Wolfgram and other high molecular weight proteins at 35-50% B, proteolipid protein at 65-80% B, and P0 glycoprotein at 55-65% B. This elution pattern is consistent with the known relative hydrophobicity of these proteins. Protein recovery for the entire procedure is greater than 74%. Proteolipid and P0 proteins isolated by HPLC contain 2.3 and 1.1 mol of covalently bound fatty acids, respectively. This fatty acid composition is similar to that previously reported using different isolation procedures. The analysis of central and peripheral nervous system myelin proteins by RP-HPLC permits the isolation of purified proteins for structural and metabolic experiments. 相似文献
14.
15.
16.
Isolated CNS myelin membranes were extracted with Triton X-100 under conditions previously established for the isolation of cytoskeletal proteins. Treated myelin retained much of its characteristic lamellar structure despite the removal of most of the major myelin basic protein (18.5 kDa) and the proteolipid protein, which together normally constitute 60% of the total myelin protein. The SDS-PAGE profile of this extract residue demonstrated an enrichment in proteins of Mr 30 to 60 kilodaltons (the Wolfgram group). The major myelin proteins were identified by antibodies on Western immunoblots, as were the 23-cyclic nucleotide 3-phosphodiesterase (CNP), actin, tubulin, myelin-associated glycoprotein (MGP) and the 21.5 kDa MBP. The overall behavior of CNP, the 21.5 kDa MBP, MGP and tubulin towards Triton extraction is reminiscent of the behavior of other membrane-skeletal complexes, supporting the idea that these and other minor myelin proteins might be part of heteromolecular complexes with interactions spanning several lamellae of the myelin sheath. 相似文献
17.
Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation 总被引:2,自引:0,他引:2
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated during development through the proliferation and differentiation of a distinct progenitor population. Not all oligodendrocyte progenitors generated during development differentiate, however, and large numbers of oligodendrocyte progenitors are present in the adult CNS, particularly in white matter. These "adult progenitors" can be identified through expression of the NG2 proteoglycan. Adult oligodendrocyte progenitors are thought to develop from the original pool of progenitors and in vitro are capable of differentiating into oligodendrocytes. Why these cells fail to differentiate in the intact CNS is currently unclear. Here we show that contact with CNS myelin inhibits the maturation of immature oligodendrocyte progenitors. The inhibition of oligodendrocyte progenitor maturation is a characteristic of CNS myelin that is not shared by several other membrane preparations including adult and neonatal neural membrane fractions, PNS myelin, or liver. This inhibition is concentration dependent, is reversible, and appears not to be mediated by either myelin basic protein or basic fibroblast growth factor. Myelin-induced inhibition of oligodendrocyte progenitor maturation provides a mechanism to explain the generation of a residual pool of immature oligodendrocyte progenitors in the mature CNS. 相似文献
18.
Lipid/myelin basic protein multilayers. A model for the cytoplasmic space in central nervous system myelin 总被引:4,自引:0,他引:4
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups. 相似文献
19.