首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the parameters of binding of 5,10,15,20-tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) to the anti-parallel human telomeric G-quadruplex d(TTAGGG)4, the oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 that does not form a quadruplex structure, as well as to the double stranded d(AC)8 x d(GT) and single stranded d(AC)8 and d(GT)8 DNAs. The analysis of absorption revealed that the binding constants and the number of DNA binding sites for TMPyP3 were d(AC)8 < d(GT)8 < d(AC)8 x d(GT)8 = d(TTAGGG)4 < dTTAGGGTTAGAG(TTAGGG)2. We demonstrated for the first time that the binding constant of TMPyP3 with the non-quadruplex chain dTTAGGGTTAGAG(TTAGGG)2 (1.3 x 10(7) M(-1)) is approximately 3 times bigger than the binding constant with the quadruplex d(TTAGGG)4 (4.6 x 10(6) M(-1)). Binding of two TMPyP3 molecules to d(TTAGGG)4 led to a decrease of thermostability of the G-quadruplex (deltaT(m) = -8 degrees C). Circular dichroism spectra of TMPyP3:d(TTAGGG)4 complexes revealed a shift of DNA structure from the G-quadruplex to an irregular chain. We hypothesize that partial destabilization of the telomeric G-quadruplex by TMPyP3 might be a reason for relatively low potency of this ligand as a telomerase inhibitor, as well as its marginal cytotoxicity for cultured tumor cells.  相似文献   

2.
The three oligodeoxyribonucleotides (ODNs) a-c, having the telomeric repeat d(TTAGGG)(4) sequence and incorporating gamma-hydroxypropano deoxyguanosine at different positions, were synthesized. Gel electrophoresis and CD analyses indicated that the ODNs assume monomolecular quadruplex structures in Na+ and in K+ buffers. The T(m) values, obtained by CD melting experiments, showed that the presence of the acrolein-dG adduct into the ODN b decreases the thermal stability of the monomolecular quadruplex structure in Na+ solution, whereas for a and c no significant effect could be detected in the same experimental conditions. On the contrary, all ODNs a-d show the same behaviour in K+ buffer. These findings are briefly discussed.  相似文献   

3.
Eukaryotic telomeres are specialized DNA-protein structures that are thought to ensure chromosomal stability and complete replication of the chromosome ends. All telomeres which have been studied consist of a tandem array of G-rich repeats which seem to be sufficient for telomere function. Originally, the human telomeric repeat (TTAGGG)n was assumed to be exclusively located at the very end of all human chromosomes. More recent evidence, however, suggests an extension into proterminal regions. Very little is known about the interstitial distribution of telomeric repeats. Here we present evidence for the presence of (TTAGGG)n repeats in internal loci on the long and short arms of different human chromosomes. In addition, we studied the genomic organization of these repeats in more detail and discuss possible functions of interstitial telomeric repeats in the human genome.  相似文献   

4.
The NMR structure of the parallel-stranded DNA quadruplex d(TTAGGGT)(4), containing the human telomeric repeat, has been determined in solution in complex with a fluorinated pentacyclic quino[4,3,2-kl]acridinium cation (RHPS4). RHPS4 has been identified as a potent inhibitor of telomerase at submicromolar levels (IC(50) value of 0.33(+/-0.13)microM), exhibiting a wide differential between telomerase inhibition and acute cellular toxicity. All of the data point to RHPS4 exerting its chemotherapeutic potency through interaction with, and stabilisation of, four-stranded G-quadruplex structures. RHPS4 forms a dynamic interaction with d(TTAGGGT)(4), as evident from 1H and 19F linewidths, with fast exchange between binding sites induced at 318 K. Perturbations to DNA chemical shifts and 24 intermolecular nuclear Overhauser effects (NOEs) identify the 5'-ApG and 5'-GpT steps as the principle intercalation sites; a structural model has been refined using NOE-restrained molecular dynamics. The central G-tetrad core remains intact, with drug molecules stacking at the ends of the G-quadruplex. The partial positive charge on position 13-N of the acridine ring appears to act as a "pseudo" potassium ion and is positioned above the centre of the G-tetrad in the region of high negative charge density. In both ApG and GpT intercalation sites, the drug is seen to converge to the same orientation in which the pi-system of the drug overlaps primarily with two bases of each G-tetrad. The drug is held in place by stacking interactions with the G-tetrads; however, there is some evidence for a more dynamic, weakly stabilised A-tetrad that stacks partially on top of the drug at the 5'-end of the sequence. Together, the interactions of RHPS4 increase the t(m) of the quadruplex by approximately 20 degrees C. There is no evidence for drug intercalation within the G-quadruplex; however, the structural model strongly supports end-stacking interactions with the terminal G-tetrads.  相似文献   

5.
Quadruplex structures arise from four coplanar G bases arranged in a Hoogsteen base pairing motif to create a central pore that can coordinate cations. The termini of eukaryotic chromosomes contain structures, known as telomeres, which are capable of forming quadruplex structures. Quadruplexes have been implicated in a variety of disease states, including cancer. The literature seems to agree that the human telomeric repeat containing four stretches of three guanines displays conformational states that are different in the presence of Na+ and K+ and an unknown number of species involved in the quadruplex to single strand transition. Using circular dichroism spectroscopy, differential scanning calorimetry, and singular-value decomposition, the number of species present in the dissociation process is assessed. The results indicate that three species exist in equilibria during the melting process. We present a model for the heat-induced denaturation from the folded to the unfolded state, whereby the hybrid parallel-antiparallel quadruplex undergoes a transition to an unknown intramolecular intermediate followed by a transition to a single strand.  相似文献   

6.
5,10,15,20-Tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) is a DNA-binding derivative of porphyrins. A comparative study of the binding of this ligand to biologically significant DNA structures was performed. For this purpose, the interactions of TMPyP3 with the antiparallel telomeric G-quadruplex d(TTAGGG)4, oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 (not forming a quadruplex structure), double-stranded d(AC)8 · d(GT)8, and single-stranded d(AC)8 and d(GT)8 DNA molecules have been studied. Analysis of absorption isotherms has demonstrated that the binding constants and the number of binding sites for the complexes TMPyP3: DNA increase in the following order: d(AC)8 < d(GT)8 < d(AC)8 · d(GT)8 = d(TTAGGG)4 < dTTAGGGTTAGAG(TTAGGG)2. It has been for the first time demonstrated that the constant for TMPyP3 binding to unfolded dTTAGGGTTAGAG(TTAGGG)2 strand (1.3 × 107 M−1) is approximately threefold higher than for the G-quadruplex d(TTAGGG)4 (4.7 × 106 M−1). Binding of two TMPyP3 molecules to d(TTAGGG)4 decreases the thermostability of G-quadruplex (ΔTm = −8°C). Circular dichroism spectra of the TMPyP3 complexes with d(TTAGGG)4 suggest that the ligand partially unfolds the G-quadruplex structure. Structural destabilization of the telomeric G-quadruplex by TMPyP3 can explain the relatively low activity of this ligand as a telomerase inhibitor and a low cytotoxicity for cultured tumor cells.  相似文献   

7.
Porphyrins are a chemical class that is widely used in drug design. Cationic porphyrins may bind to DNA guanine quadruplexes. We report the parameters of the binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium) porphyrin (P1) and 5,10,15,20-tetrakis(N-etoxycarbonylmethyl-4-pyridinium) porphyrin (P2) to antiparallel telomeric G-quadruplex formed by d(TTAGGG)4 sequence (TelQ). The binding constants (K i ) and the number of binding sites (N j ) were determined from absorption isotherms generated from the absorption spectra of complexes of P1 and P2 with TelQ. Compound P1 demonstrated a high affinity to TelQ (K i = (40 ± 6) × 106 M?1, N 1 = 1; K 2 = (5.4 ± 0.4) × 106 M?1, N 2 = 2). In contrast, the binding constants of P2-TelQ complexes (K 1 = (3.1 ± 0.2) × 106 M?1, N 1 = 1; K 2 = (1.2 ± 0.2) × 106 M?1, N 2 = 2) were one order of magnitude smaller than the corresponding values for P2-TelQ complexes. Measurements of the quantum yield and fluorescence lifetime of the drug’s TelQ complexes revealed two types of binding sites for P1 and P2 on the quadruplex oligonucleotide. We concluded that strong complexes can result from the interaction of the porphyrins with TTA loops whereas the weaker complexes are formed with G-quartets. The altered TelQ conformation detected by the circular dichroism spectra of P1-TelQ complexes can be explained by the disruption of the G-quartet. We conclude that peripheral carboxy groups contribute to the high affinity of P1 for the antiparallel telomeric G-quadruplex.  相似文献   

8.
The intrachromosomal distribution of non-telomeric sites of the (TTAGGG)n telomeric repeat was determined for 100 vertebrate species. The most common non-telomeric location of this sequence was in the pericentric regions of chromosomes. A variety of species showed relatively large amounts of this sequence present within regions of constitutive heterochromatin. We discuss possible relationships between the non-telomeric distribution of the (TTAGGG)n sequence and the process of karyotype evolution, during which these sites may provide potential new telomeres.  相似文献   

9.
The complexation of the new protein vector PGEk--a carrier of nucleic acids into proliferating cells with phosphodiester d(TTAGGG)4 (TMO) and phosphorothioate Sd(TTAGGG)4 (TMS) telomerase inhibitor oligonucleotides was studied. PGEk molecule, consisting of 64 amino acids, is comprising the sequence of the human epidermal growth factor EGFh which is hydrophobic cell targeting moiety serving for receptor-mediated endocytosis and an NLS (nuclear localization signal) which is hydrophilic serving as a DNA-binding and selective nuclear import moiety. Experiments were carried out in 0.01 M Na-phosphate buffer contained 0.1 M NaCl, pH 7.8 at 37 degrees C. CD spectral analysis revealed that TMO molecules folded back into intramolecular antiparallel G-quadruplex while TMS molecules were represented as unstructured thread. The number of adsorbed PGEk molecules were estimated using PGEk intrinsic fluorescence decrease and fluorescence polarization increase of PGEk under oligonucleotide titration. Adsorption isotherms were plotted in Scatchard coordinates. We have shown that adsorption of the first two PGEk molecules on TMO and TMS occurs noncooperatively with the high association constants K1(TMO) = (7 +/- 1) x 10(7) M(-1) and K1(TMS) = (3 +/- 0.5) x 10(7) M(-1), respectively. Further adsorption up to 5-6 PGEk molecules on TMO occurrs cooperatively with still high association constant K2(TMO) = (4.0 +/- 1.5) x 10(6) M(-1). TMS oligonucleotide binds the third PGEk molecule rather weakly, K2(TMS) = (8 +/- 2) x 10(5) M(-1). CD spectral analysis revealed that G-quadruplex structure formed by TMO have undergone a partial unfolding by binding of PGEk molecules while single-stranded structure formed by TMS was not affected by binding PGEk. Thus, the tertiary structure of DNA and the number of adsorbed PGEk molecules formed biologically active compounds PGEk: TMO and PGEk: TMS were defined, which are able to penetrate through the membrane of proliferating cells and to suppress their growth.  相似文献   

10.
The telomeric DNA oligomers, d(TTAGGG)(n), where n=1, 2, 4, could self-associate into the multi-stranded structures in appropriate condition, exhibited different CD spectra. The presense of Na(+) was more advantage to facilitate the formation of anti-parallel conformation, but the presense of K(+) enhanced their thermal stability. Spectroscopic analysis of 3, 3'-diethyloxadicarbocyanine (DODC) showed the formation of hairpin quadruplex structures for d(TTAGGG)(2) and d(TTAGGG)(4), but d(TTAGGG) could not. The four-stranded tetraplexes and branched nanowire formed in the presense of K(+) or Na(+) alone were observed by atomic force microscopy (AFM). The ability of d(TTAGGG)(n) to self-assemble into four-stranded tetraplexes and nanowires depends strongly on the number of repeating units and ionic environment. A model to explain how these structures formed is proposed.  相似文献   

11.
HeLa cell nuclear proteins that bind to single-stranded d(TTAGGG)n, the human telomeric DNA repeat, were identified and purified by a gel retardation assay. Immunological data and peptide sequencing experiments indicated that the purified proteins were identical or closely related to the heterogeneous nuclear ribonucleoproteins (hnRNPs) A1, A2-B1, D, and E and to nucleolin. These proteins bound to RNA oligonucleotides having r(UUAGGG) repeats more tightly than to DNA of the same sequence. The binding was sequence specific, as point mutation of any of the first 4 bases [r(UUAG)] abolished it. The fraction containing D and E hnRNPs was shown to bind specifically to a synthetic oligoribonucleotide having the 3' splice site sequence of the human beta-globin intervening sequence 1, which includes the sequence UUAGG. Proteins in this fraction were further identified by two-dimensional gel electrophoresis as D01, D02, D1*, and E0; intriguingly, these members of the hnRNP D and E groups are nuclear proteins that are not stably associated with hnRNP complexes. These studies establish the binding specificities of these D and E hnRNPs. Furthermore, they suggest the possibility that these hnRNPs could perhaps bind to chromosome telomeres, in addition to having a role in pre-mRNA metabolism.  相似文献   

12.
Kan ZY  Lin Y  Wang F  Zhuang XY  Zhao Y  Pang DW  Hao YH  Tan Z 《Nucleic acids research》2007,35(11):3646-3653
Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in the double-stranded telomere region where the two complementary strands are constrained in close vicinity and quadruplex formation, if possible, has to compete with the formation of the conventional Watson–Crick duplex. In this work, we studied quadruplex formation in oligonucleotides and double-stranded DNA containing both the G- and C-rich sequences to better mimic the in vivo situation. Under such competitive condition only duplex was observed in dilute solution containing physiological concentration of K+. However, quadruplex could preferentially form and dominate over duplex structure under molecular crowding condition created by PEG as a result of significant quadruplex stabilization and duplex destabilization. This observation suggests quadruplex may potentially form or be induced at the blunt end of a telomere, which may present a possible alternative form of structures at telomere ends.  相似文献   

13.
A study was made of the complexation of the protein vector PGEk, which transfers nucleic acids into the nuclei of cancer cells, with phosphodiester d(TTAGGG)4 (TMO) and phosphorothioate Sd(TTAGGG)4 (TMS) oligonucleotides, which inhibit telomerase. PGEk (64 amino-acid residues) contains a hydrophobic domain that originates from the human epidermal growth factor (hEGF) and is responsible for the receptor-mediated transfer of PGEk across the cell membrane, and the hydrophilic domain, which is a nuclear localization signal (NLS) and serves to bind DNA and deliver it to the cell nucleus. Experiments were performed in 0.01-M Na-phosphate and 0.1-M NaCl at 37°C. An analysis of the circular dichroism (CD) spectra showed that TMO forms an antiparallel G-quadruplex, while TMS occurs in the form of unfolded strands. The number of PGEk molecules adsorbed on oligonucleotides was estimated from the quenching of PGEk fluorescence and the increase in its polarization upon titration with oligonucleotides. Adsorption isotherms were plotted in Scatchard coordinates. Adsorption of the first two PGEk molecules on TMO and TMS followed a noncooperative mechanism and was characterized by high association constants: K 1(TMO) = (7 ± 1) · 107 M?1 and K 1(TMS) = (3 (± 0.5) · 107 M?1. Further adsorption, up to five or six PGEk molecules per TMO molecule, showed high cooperation and K 2(TMO) = (4.0 ± 1.5) · 106 M?1. Unlike TMO, TMS only weakly bound the third PGEk molecule: K 2(TMS) = (8 ± 2) · 105 M?1. An analysis of the CD spectra showed that PGEk partly unfolded the G-quadruplex formed by TMO and did not have an effect on the single-stranded structure of TMS. The secondary structure of DNA and the number of protein subunits were established for the biologically active complexes PGEk-TMO and PGEk-TMS, which efficiently pass across the membrane of cancer cells and inhibit their proliferation.  相似文献   

14.
Interstitial hybridization sites for the (TTAGGG)n telomeric repeat sequence were present in all seven species of hylid frogs examined and in a triploid hybrid between two of the species. Intra- and interspecific differences and similarities in hybridization sites agreed with what is known about the systematics of these species. Chromosome fusions, fissions, and inversions do not appear to have played a role in the evolution of the interstitial sites for the telomeric repeat in the species examined.  相似文献   

15.
We have introduced a G-quadruplex-binding ligand, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), to verify the major structure of d(T2AG3)4 (H24) in potassium solution and examine the structural conversion of H24 in sodium solution upon potassium titration. The studies of circular dichroism, induced circular dichroism, spectral titration and gel competition have allowed us to determine the binding mode and binding ratio of BMVC to the H24 in solution and eliminate the parallel form as the major G-quadruplex structure. Although the mixed-type form could not be eliminated as a main component, the basket and chair forms are more likely the main components of H24 in potassium solution. In addition, the circular dichroism spectra and the job plots reveal that a longer telomeric sequence d(T2AG3)13 (H78) could form two units of G4 structure both in sodium or potassium solutions. Of particular interest is that no appreciable change on the induced circular dichroism spectra of BMVC is found during the change of the circular dichroism patterns of H24 upon potassium titration. Considering similar spectral conversion detected for H24 and a long sequence H78 together with the G4 structure stabilized by BMVC, it is therefore unlikely that the rapid spectral conversion of H24 and H78 is due to structural change between different types of the G4 structures. With reference to the circular dichroism spectra of d(GAA)7 and d(GAAA)5, we suggest that the spectral conversion of H24 upon potassium titration is attributed to fast ion exchange resulting in different loop base interaction and various hydrogen bonding effects.  相似文献   

16.
17.
Chromosomal localization of the telomeric sequence (TTAGGG)(n) in eight New World Primates (Platyrrhini) (Alouatta caraya, Alouatta palliata, Alouatta guariba clamitans, Aotus azarae, Ateles chamek, Cebus nigritus, Cebus paraguayanus, and Saimiri boliviensis) using Fluorescence In Situ Hybridization (FISH) with a peptide nucleic acid (PNA) pantelomeric probe and their possible relationship with the C-banding pattern were analyzed. FISH showed telomeric signals only at the terminal regions of chromosomes from all the species analyzed. Although all of them showed centromeric C+ bands and different size and location of extracentromeric C+ bands, none, except Aotus azarae exhibited (peri)centromeric interstitial telomere-like sequences (ITS). The presence of ITS in Aotus azarae was limited to one pair of submetacentric chromosomes and very likely represents telomeric sequences remaining after a fusion event of ancestral chromosomes during karyotype evolution. Therefore, our data indicate that the distribution of heterochromatin blocks do not correlate with the presence of ITS. However, we cannot rule out the possibility that simple ITS arrays with a few copies of the (TTAGGG)(n) sequence, not detectable by conventional FISH, might play a role in the karyotypic evolution of Ceboidea. Further FISH and molecular studies will be needed to confirm this hypothesis.  相似文献   

18.
19.
20.
The chromosome set of Patinopecten yessoensis (Jay, 1857) wascharacterized using Giemsa staining, DAPI staining and fluorescencein situ hybridization (FISH) with three repetitive DNA probes[18S–28S rDNA, 5S rDNA and telomeric (TTAGGG)n]. DAPIstaining showed that AT-rich regions were located on the centromereof almost all chromosomes and interstitial banding was not observed.FISH showed that 18S–28S rDNA spread over the short armsof two subtelocentric chromosome pairs and 5S rDNA was locatedon the long arm of one subtelocentric chromosome pair. SequentialFISH demonstrated that 18S–28S and 5S rDNA were locatedon different chromosomes. FISH also showed that the vertebratetelomeric sequence (TTAGGG)n was located on both ends of eachchromosome and no interstitial signals were detected. Sequential18S–28S rDNA and (TTAGGG)n FISH indicated that repeatedunits of the two multicopy families were closely associatedon the same chromosome pair. (Received 4 January 2007; accepted 1 September 2007)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号