首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The effects of treating sunflower seed (SS) and meal (SM), as well as of a mixture of both feeds (SSM; 45:55) with a solution of malic acid (1 M; 400 ml/kg feed) and heating for protection against ruminal degradation were studied. Four rumen-fistulated sheep were fed two mixed diets composed of oat hay and concentrate (40:60) and differing only in the concentrate, that contained either a mixture of untreated SS and SM (control diet) or treated SS and SM (MAH diet). A crossover design with two 24-d experimental periods was used, and each period included 10 d of diet adaptation, 9 d for in situ incubations of SS, SM and SSM, and 5 d for measuring ruminal fermentation characteristics and rumen emptying. From day 6 onwards a solution of (15NH4)2SO4 was continuously infused into the rumen of each sheep to label ruminal bacteria. Feeding the MAH diet did not affect either ruminal pH or concentrations of total volatile fatty acids and NH3-N, but decreased (p ≤ 0.01) the molar proportions of acetate and propionate and increased those of butyrate (p< 0.001). Organic matter and lipid contents of ruminal bacteria were lower whereas both N content and 15N enrichment were greater (p ≤ 0.05) in MAH-fed sheep. The in situ effective degradability (ED) of different fractions of SS, SM and SSM were calculated from the ruminal rates of particle comminution and passage, and values were corrected for microbial contamination. The MAH treatment decreased the ED of most fractions for all feeds and increased the supply of by-pass crude protein (CP) by 19.1% and 120% for SS and SM, respectively, and that of fat by 34% for SS. The MAH treatment also increased the in vitro intestinal digestibility of the by-pass CP for both SS (from 60.1% to 75.4%) and SM (from 83.2% to 91.0%). The simultaneous heating of both feeds (SSM) reinforced the protective effect of the MAH treatment and increased the by-pass CP without altering its intestinal digestibility, increasing the intestinally digested CP content by 16.8% compared with the value estimated from the results obtained for MAH-treated SS and SM incubated independently. These results indicate that the MAH treatment was effective to protect sunflower protein against rumen degradation and increased its intestinal digestibility.  相似文献   

2.
Fresh, freeze-, air- and oven-dried at 60 °C and 100 °C olive leaves (OL) were studied in order to determine the effect of different drying procedures on OL chemical composition, in vitro digestibility, ruminal degradability, and intestinal digestibility. The drying procedure affected all the parameters measured except for gross energy (GE; P=0.194). Protein-bound condensed tannins (CT) decreased (P=0.001) with freeze-, air- and 60 °C drying (from 1.25 up to 0.82 g/kg dry matter, DM). Total CT were only decreased (P=0.001) by drying at 60 °C (from 10.0 to 6.24 g/kg DM). The in vitro crude protein (CP) digestibility increased (P<0.001) with drying except for oven-drying at 100 °C up to 58%. Values for CP digestibility found in freeze- and air-dried OL were not different (P>0.05). No differences (P>0.05) were observed between CP digestibility in air- and oven-dried at 60 °C OL. Effective degradability of DM and CP increased from 0.53 to 0.62 (P=0.005) and from 0.46 to 0.64 (P=0.002), respectively after treatment. The apparent intestinal digestibility of undegraded CP in the rumen was only affected (P=0.046) by oven-drying, which increased it from 0.33 to 0.39. As air-drying did not have detrimental effects on the OL nutritive value it could be an appropriate, simple and low-cost procedure for olive-leaves preservation.  相似文献   

3.
《Small Ruminant Research》2007,72(1-3):205-214
In situ degradability and in vivo (by difference) digestibility trials were conducted to estimate lower tract residual N digestibility (LTRND) of five protein supplements. Efforts were also made to improve the in situ method of measuring protein degradability. For in situ degradability trials, soybean meal (SBM), corn gluten meal (CGM), cotton seed cake (CSC), wheat bran (WB) and corn gluten feed (CGF) were weighed into Dacron bags and incubated in the rumen of three cannulated Chios ewes. SBM, CGF and WB were degraded significantly, while CGM and CSC were least degraded. Microbial contamination (MC) resulted in a 5.3–28.3% artificially decrease in effective ruminal protein degradation of supplements. Total tract digestibility was measured using five rams in an in vivo, by difference, trial using a 5 × 5 Latin-square design. SBM had higher CP digestibility compared to WB, CGF and CSC, and higher N free extract (NFE) digestibility compared to the other feeds. CGM showed higher CP digestibility compared to WB, CGF or CSC, while CGF had higher organic matter (OM) and crude fibre (CF) digestibility compared to WB. CSC was the protein source with the lowest digestibility of OM, CP and NFE in comparison with the other feeds. LTRND was predicted as 0.928, 0.806, 0.227, 0.540, and 0.498 for SBM, CGM, CSC, WB, and CGF, respectively, or 0.931, 0.803, 0.147, 0.364, and 0.316 when the correction for MC was applied. Lower tract N digestibility could be predicted via a combination of in situ degradability and in vivo apparent digestibility data. This approach yields significant data regarding LTRND estimation of protein supplements, while diminishing animal suffering by avoiding small intestinal fistulation.  相似文献   

4.
The effective degradability and intestinal digestibility of CP of untreated and with formaldehyde (F) treated sunflower press ‐ cakes (SF), lucerne meal (LM) and field beans (FB) were measured on polycannulated bulls by “in sacco”; and “mobile bag”; methods. The feeds were treated by F solution in doses from 0.2; 0.4. . . to 2.0 g F per 100 g CP.

The effective CP degradability after treatment was decreased significantly (for SF from 78 to 33%, LM from 73 to 62%, FB from 70 to 47% with max. dose of F). The effect of F was various on individual feeds.

The intestinal digestibility of treated feeds, without previous incubation in the rumen, passed from abomasum to feaces has been influenced with doses of F non significantly. The digestibility of FB treated with max. dose of F was lower about 20% in the part duodenum feaces than in abomasum feaces. The digestibility in the part caecum ‐ feaces for all tested feeds has been decreasing with doses of F, similar as in the rumen. The intestinal digestibility of in rumen undegraded crude protein residues of SF has been influenced by the treatment positively. It increased from 43 to 82%. The effect of F on LM was very low. The digestibility has been changed from 75 to 80%.  相似文献   

5.
Ruminal nitrogen degradation and intestinal digestibility (ID) of the undegraded nitrogen of three sunflower meals were determined on three wethers fitted with rumen cannulae and T-type duodenal cannulae using nylon bags. Meals were obtained from semi-dehulled seeds by conventional hexane extraction (samples SD1 and SD2) or from whole seeds by a discontinuous procedure of pressing and hexane extraction (sample W), which causes a superior thermal effect. Therefore, effective degradability of nitrogen for the W sample (0.537) was lower (P < 0.001) than for conventional meals. Between the latter, SD2 had a lower value (P = 0.019) than SD1 (0.776 and 0.812, respectively). ID decreased in all meals (P < 0.001) as the ruminal incubation time (t) increased. This evolution could be described accurately by an exponential curve as ID = s + he(-kit). A method is proposed for estimating the proportion of undegraded ruminal nitrogen digested in the intestines (Di) from 1) the above equation, 2) the undegradable (r) and the insoluble and potentially degradable (b) nitrogen contents of the feed and the degradation rate of the last fraction (k(d)), and 3) the rumen outflow rate of particles (k(p)). The Di value is shown to be: [equation: see text] The percentages of nitrogen from digested feed in the intestines obtained with this method were 15.1, 17.2 and 39.0 for SD1, SD2 and W, respectively. Resulting effective ID values of undegraded nitrogen were 0.804, 0.767 and 0.844. Undigested nitrogen after ruminal and intestinal incubations decreased in linear and quadratic form in all meals as ruminal incubation time increased.  相似文献   

6.
Anaerobic ruminal fungi may play an active role in fibre degradation as evidenced by the production of different fibrolytic enzymes in culture filtrate. In the present study, 16 anaerobic fungal strains were isolated from ruminal and faecal samples of sheep and goats. Based on their morphological characteristics they were identified as species of Anaeromyces, Orpinomyces, Piromyces and Neocallimastix. Isolated Neocallimastix sp. from goat rumen showed a maximum activity of CMCase (47.9 mIU ml(-1)) and filter paper cellulase (48.3 mIU ml(-1)), while Anaeromyces sp. from sheep rumen showed a maximum xylanolytic activity (48.3 mIU ml(-1)). The cellobiase activity for all the isolates ranged from 178.0-182.7 mIU ml(-1). Based on the enzymatic activities, isolated Anaeromyces sp. from sheep rumen and Neocallimastix sp. from goat rumen were selected for their potential of in vitro fibre degradation. The highest in vitro digestibility of NDF (23.2%) and DM (34.4%) was shown for Neocallimastix sp. from goat rumen, as compared to the digestibility of NDF and DM in the control group of 17.5 and 25.0%, respectively.  相似文献   

7.
The influence of physical treatment‐expansion and flaking‐on crude proteins degradability in the rumen was studied in maize, maize‐gluten feed, rape extracted meal and in the expanded one at 120°C and 150°C, rape cake, wheat and flaked wheat by in sacco method. The enzymatic digestibility of crude protein in the rumen undegraded residues of the above mentioned feeds was determined by an enzymatically in vitro method.

The treatment of feed decreased significantly the original solubility and theoretical degradability of crude proteins, and the amount of undegraded crude proteins was increased. Positive influence on the amount of enzymatically digested crude protein was determined in rape expanded at 120 °C and 150 °C (60, 61 and/or 68%). Flaking of wheat had a similar effect. Enzymatic digestibility at undegraded rests where increased by 8–10% after the heat treatment and it remained almost unchanged in expanded maize‐gluten feed.  相似文献   

8.
The effects of non-enzymatic browning reactions on in vitro ruminal gas production and in vitro ruminal and intestinal crude protein (CP) digestibilities of soybean (SBM) and cottonseed (CSM) meals were investigated. Non-enzymatically browned SBM and CSM samples were prepared using two xylose levels (10 or 30 g/kg dry matter), two heating lengths (30 or 60 min) and two heating temperatures (120 or 150 °C) for a total of one untreated (commercially solvent-extracted, Control) and eight treated samples for each protein source. The control SBM had higher (P<0.001) in vitro ruminal CP degradability values than the treated samples. Intestinal protein digestibility and total-tract CP digestibility of CSM and SBM were affected by the treatment (P<0.01). The results of the study indicate that not only ruminal CP degradability is reduced but also intestinal and total-tract CP digestibilities may be lowered depending on protein source and intensity of the non-enzymatic browning reaction.  相似文献   

9.
A study was conducted to determine the effects of moist heat treatment (127°C, 117 kPa steam pressure) for 10 min on protein fractions and in-vitro crude protein (CP) degradability of mustard meal. Rumen undegraded protein (RUP) and amino acid disappearance of unheated, and heated, mustard meal were measured following 12 h of rumen incubation using two ruminally fistulated cows. Intestinal availability of RUP was estimated using an enzymatic (pepsin–pancreatin) procedure. Heat treatment reduced (p<0.05) protein solubility and increased (p<0.05) neutral detergent insoluble CP without affecting acid detergent insoluble CP of mustard meal. Relative to the control, heated mustard meal had a lower (p<0.05) effective in-vitro CP degradability (445.2 vs. 746.8 g kg−1 of CP) and a higher (p<0.05) ruminal escape CP (615.1 vs. 120.2 g kg−1 of CP) value. Amino acid composition was not affected by heat treatment except for the concentration of arginine and lysine which was lower (p<0.05) in heated than in unheated mustard meal. Disappearance of all amino acids following 12 h of rumen incubation was lower (p<0.05) in unheated than in heated mustard meal. Heat treatment increased (p<0.05) the amount of protein available for digestion in the small intestine from 75.7 to 518.1 g kg−1 of CP. It was concluded that moist heating of mustard meal for 10 min will reduce ruminal CP and amino acid degradability without compromising the intestinal availability of ruminal undegraded protein.  相似文献   

10.
Fat coating of soybean meal (SBM) can reduce its protein degradability in the rumen, but the encapsulation of SBM with palmitic (PA) and stearic acids (SA) has not yet been investigated, despite both fatty acids are common energy sources in dairy cow diets. This study aimed to evaluate the effects of applying a novel method, using either 400 or 500 g fat/kg (treatments FL40 and FL50, respectively), which was enriched in PA and SA at different ratios (100:0, 75:25, 50:50, 25:75 and 0:100), on physical and chemical characteristics, ruminal degradability, solubility and in vitro intestinal protein digestibility (IVIPD) of the obtained products. Encapsulation of SBM in fat resulted in greater mean particle size and lower bulk density and protein solubility than unprotected SBM (USBM). Treatment FL50 resulted in increased (p < 0.01) rumen-undegraded protein (RUP) compared to USBM. There were no differences in RUP of SBM when different PA: SA ratios were used. The mean RUP content of treatments FL40 and FL50 (306 and 349 g/kg, respectively) was greater compared to USBM (262 g/kg, p < 0.05), but lower than that for a standard heat-treated SBM (431 g/kg). Values of IVIPD did not differ among SBM, heat-treated SBM and FL40 and FL50 samples, all being greater than 97.8%. In conclusion, encapsulation of SBM with fats enriched in PA and SA proved to be effective in reducing protein solubility and increasing RUP without depressing protein digestibility in the intestine. For validation of the method, in vivo research to investigate the effects of these products on the production of dairy cows is warranted.  相似文献   

11.
The ruminal effective degradability (RED) and intestinal effective digestibility (IED) for dry matter, crude protein (CP) and amino acids (AA) were estimated by a simplified in situ method using pooled samples from rumen-incubated residues, which represented the ruminal outflow of undegraded feed. The effect of microbial contamination in the rumen was corrected using 15N infusion techniques. Studies were carried out for soybean meal (SBM), barley grain (BG) and lucerne hay (LH) in three wethers cannulated in the rumen and the duodenum. Uncorrected values of RED for CP obtained either by mathematical integration or our simplified method were similar in all feeds. Microbial N in the pooled samples of SBM, BG and LH were 2%, 11% and 24% of total N, respectively. However, intestinal incubation eliminated this microbial charge by 100%, 99% and 88%, respectively. With microbial corrections, RED showed an increase, and IED showed a decrease, except for SBM. With this correction, intestinal digested CP was reduced by 2% in SBM, 13% in BG and 34% in LH. Corrected IED of AA was relatively similar in SBM (97–99%). However, large variations were observed in BG (74–93%) and in LH (10–88%). Digestion in the rumen and intestine changed the essential AA pattern. Overall, our results support that AA digestion is affected by the characteristics of their radicals and their contents in plant cell wall proteins. The accurate estimation of feed metabolisable AA or protein requires effective measures that are corrected by ruminal microbial contamination. The proposed in situ method largely simplifies these tasks and allows a more complete and less expensive feed evaluation.  相似文献   

12.
Effects of fatty acids of linseed in different forms, on ruminal fermentation and digestibility were studied in dry cows fitted with ruminal and duodenal cannulas. Four diets based on maize silage, lucerne hay and concentrates (65/10/25 dry matter (DM)) were compared in a 4 × 4 Latin square design experiment where the diets were: control diet (C), diet RL supplied 75 g/kg DM rolled linseeds, diet EL supplied 75 g/kg DM extruded linseeds, and diet LO supplied 26 g/kg DM linseed oil and 49 g/kg DM linseed meal. The diets did not differ in total organic matter (OM) and fibre digestibility, in forestomach and intestinal OM digestibility, and in duodenal N flow. Microbial N duodenal flow tended to be lower for RL versus C diet (P<0.1). Extrusion did not reduce ruminal crude protein (CP) degradation in vivo and in situ. Volatile fatty acid concentration and pattern, and protozoa concentration in the rumen, did not vary among diets. Results confirm the absence of a negative effect of a moderate supply of linseed on rumen function, as well as no effect of extrusion on its ruminal CP degradability.  相似文献   

13.
Alpine, Angora and Nubian kids, 6–8 months old and weighing 15–25 kg were grazed on high quality (wheat) or low quality pasture (dormant bermudagrass) for 54 d to evaluate breed differences and metabolic responses. Each kid on the bermudagrass pasture also received daily 200 g of a 24% CP supplement to stimulate intake.

Wheat pasture had an in vitro organic matter digestibility (IVOMD) of 78 vs. 35% for the Bermuda pasture. Goats gained 50 g/d on wheat pasture vs. 10 g/d on Bermuda pasture (P<0.02). Angora kids gained the least weight on Bermuda (−8 g/d; P<0.05) and most on wheat pasture (62 g/d; P<0.05). Mohair production was greater for Angora goats on wheat pasture compared to those on Bermuda pastures (9.9 vs. 6.2 g/100 cm2; P<0.05). Angora goats on Bermuda pastures had elevated levels of NEFA and plasma ammonia, and reduced levels of plasma urea N, consistent with catabolism of body tissue stores. Angora goats tended to have lower concentration of rumen VFA and ammonia. Angora goats appear to be more sensitive to inanition as compared to Alpine and Nubian goats. Presumably, their obligate nutrient requirements for hair production limits their ability to adapt, making them more vulnerable to nutritional stress.  相似文献   


14.
A continuous culture system, inoculated with rumen liquor from goats or sheep, was used to study fermentation characteristics of olive leaves (OL). The effects of adding polyethylene glycol (PEG 4000 MW; 0, 2 or 20 g/100 g OL) and/or supplementing with urea (U) or sunflower meal (SM) (1.0 g N/100 g OM) were also studied. Olive leaf fermentation promoted low VFA production (35.2 mmol/d), predominantly of acetic acid, and low efficiency of VFA production (4.91 mol/kg digestible carbohydrates, DCHO). Both values increased with N supplementation, but effects of PEG were variable. No differences ascribed to the rumen inoculum origin were observed. The ammonia N concentration was increased only by supplementation with U. Total and amino acid N output was low and increased with N addition, but it was not affected by PEG treatment. No differences ascribed to the inoculum origin were observed concerning microbial N production rate or efficiency (g N/kg DCHO). There was no clear difference between sources of supplementary N regarding bacterial protein synthesis. On the basis of PEG results, the effect of tannins on OL fermentation was not important.  相似文献   

15.
A study was conducted to determine the effects of extrusion on ruminal, post-ruminal and whole tract digestibility of flaxseed. Extrusion was performed at 155°C with a residence time of 43?s. Two non-lactating Holstein cows fitted with ruminal and duodenal cannulas were used in a randomized complete block design. Results showed that extruded flaxseed had higher (P?in situ soluble and lower (P?P?P?P?P?P?相似文献   

16.
The digestion of the acid detergent fiber (ADF) fraction of vetch-oat hay was studied in two dromedaries and three sheep, all rumen-fistulated and fed vetch-oat hay with a concentrate. Dromedaries and sheep consumed similar amounts of feed dry matter (DM) per kilogram of metabolic weight, but dromedaries drank less water than sheep. There were no differences in the volatile fatty acid (VFA) and ammonia concentrations in the rumen between dromedaries and sheep, but pH was higher in the dromedaries than in the sheep (P < 0.05). The mixture of VFA contained more propionate and butyrate and less acetate in dromedaries than in sheep (P < 0.05). The protozoal concentration was higher in the rumen of sheep than of dromedaries. This result was consistent with the higher N---NH3, concentration in sheep. Entodinium was the most abundant species in both dromedaries and sheep. Specific rates of rumen liquid (PEG) and particle (chromium-mordanted hay) outflow were higher and lower, respectively, in dromedaries than in sheep. Also, dromedaries had higher in sacco, in vitro, and fecal digestibilities of vetch-oat hay dry matter (DM) and ADF than sheep. In sacco, the potential degradable fraction was higher, but the rate of degradation was not. The greater utilization of ADF in the rumen by dromedaries is discussed in relation to the higher cellulolytic activity of the rumen microorganisms, the longer retention time of feed particles and/or the greater buffering capacity of the rumen contents of the dromedary against fermentation acids.  相似文献   

17.
Twelve wethers (27–33 kg and 12–14 months of age) representing meat (Nubian), milk (Alpine) and mohair (Angora) producing goats were used to evaluate breed differences in protein utilization with diets containing 9 (L), 15(M) or 21% CP (H) and 2.4 Mcal ME/kg DM in a digestion trial. Fecal N, urine N and absorbed N as percent of N intake were not affected (P>0.05) by breed. Retained N as percent of absorbed N was not different (P>0.05) between breeds. Ruminal propionate (molar %) was lower (P<0.05) in Angora, but other ruminal VFA and ammonia-N were not affected (P>0.05) by diet or breed. Plasma urea-N increased (P<0.01) with dietary CP level (8.3, 22.0 and 33.3 mg/dl for L, M and H, respectively), and concentrations were lowest for Angoras and highest for Nubians (18.5 vs. 21.2 vs. 23.9 mg/dl) (P<0.01). Plasma total protein (mean 69.7 g/l), glucose (mean 83.1 mg/dl), non-esterfied fatty acids (mean 101.4 μEq/l) and cortisol (mean 10.8 ng/ml) were not affected (P>0.05) by breed or diet. Plasma glucagon concentrations increased (P<0.05) with increasing CP intake (72.4, 167.6 and 239.1 pg/ml for L, M and H, respectively). The study indicated that there was no apparent breed difference between Nubian, Alpine and Angora goats in nitrogen utilization when goats were fed pelleted diets containing 9 to 21% CP.  相似文献   

18.
In situ estimates of ruminal undegraded fraction (RU) and effective intestinal digestibility (EID, corrected for microbial colonisation) of dry matter (DM), crude protein (CP) and total analysed amino acids (TAA) of rye, wheat and corn grains, wheat bran, wheat and barley distillers’ dried grains with solubles (DDGS) and corn gluten feed were measured on three rumen and duodenum cannulated wethers using 15N labelling techniques and considering ruminal rates of particle comminution (kc) and outflow. Results indicate that not considering kc and microbial colonisation led to considerable overestimations of RU which increased with feed ruminal degradation. Microbial colonisation may be also associated with overestimations of EID, whose estimates for DM, CP and TAA were predicted from parameters related with the ruminal escape of intestinally indigestible materials. The RU estimates were higher for TAA than for CP in grains, but the opposite was observed in by-products, whereas EID estimates were higher for TAA in all feeds. To obtain accurate protein values in these feedstuffs, it is required to consider both kc and ruminal microbial colonisation. The CP-based results underestimate the intestinally digested protein in grains and the opposite is evidenced in cereal by-products. Microbial protein synthesised in the rumen is largely the major fraction of the feedstuff protein value with the exception of DDGS.  相似文献   

19.
The ruminal degradation and intestinal digestibility (ID) of dry matter (DM) and crude protein (CP) of different feed samples were measured in two trials by using nylon bag and rumen outflow rate techniques in three wethers cannulated in the rumen and in the duodenum. In trial 1, three samples of grains of wheat, barley, and corn treated by cooking (TW, TB, and TC, respectively) were studied together with a sample of untreated corn grains (CG) of different origin. In trial 2, these studies were carried out on a sample of rapeseed (RS) and on a mix of this same sample and rapeseed meal (in proportions 70:30) treated by cooking (TR). In both trials, the animals were fed at the same intake level (40 g DM x kg(-1) LW0.75) with 2:1 (DM basis) forage to concentrate diets. Rumen degradation rates of DM were high in the treated cereals (between 11.0 and 14.2% x h(-1)) and low in the CG (6.35% x h(-1)), whereas for CP these rates were low in all cereals. For DM, in all cereals, ID decreased linearly as the ruminal incubation time increased. The values of intestinal effective digestibility (IED), calculated from these functions and from the rumen outflow, were respectively: 86.4, 62.1, 51.5, and 67.9%. For CP, ID was unaffected by the ruminal incubation time in corn samples, whereas in TW and TB a reduction of these values was only observed for the time of 48 h. The values of IED of CP for CG, TW, TB and TC were: 82.6, 88.9,82.5, and 91.6%, respectively. Rumen degradation rates of the RS and TR samples were 8.35 and 8.23% x h(-1) for DM and 12.0 and 9.59% x h(-1) for CP. In RS, the ID of DM and CP showed a downward trend with an increase of the ruminal incubation time, as modelled according to an exponential function. This same trend was observed for TR after a lag period estimated at 7.53 and 6.51 h for DM and CP, respectively. The values of IED of RS and TR were respectively 56.5 and 50.8% for DM and 71.9 and 80.1% for CP. These same results were also determined by a simplified method using a sample pooled to be representative of the rumen outflow of undegraded feed. The respective values for RS and TR were 54.8 and 51.6 for DM and 65.8 and 78.9% for CP. This method seems to be a promising technique to estimate IED, although more studies are needed to improve its accuracy.  相似文献   

20.
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号