首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The boroProline-based dipeptidyl boronic acids were among the first DPP-IV inhibitors identified, and remain the most potent known. We introduced various substitutions at the 4-position of the boroProline ring regioselectively and stereoselectively, and incorporated these aminoboronic acids into a series of 4-substituted boroPro-based dipeptides. Among these dipeptidyl boronic acids, Arg-(4S)-boroHyp (4q) was the most potent inhibitor of DPP-IV, DPP8 and DPP9, while (4S)-Hyp-(4R)-boroHyp (4o) exhibited the most selectivity for DPP-IV over DPP8 and DPP9.  相似文献   

2.
DPP8 is a prolyl dipeptidase homologous to DPP-IV, which is a drug target for Type II diabetes. The biological function of DPP8 is not known. To identify potent and selective chemical compounds against DPP8, we have synthesized a series of isoquinoline and isoindoline derivatives and have tested their inhibitory activity against DPP8, DPP-IV and DPP-II. Isoindoline derivatives were found to be more potent DPP8 inhibitors than isoquinoline derivatives. Isoindoline with a 1-(4,4'-difluor-benzhydryl)-piperazine group at the P2 site was observed to be a very potent DPP8 inhibitor, having an IC(50) value of 14nM with at least a 2500-fold selectivity over either DPP-IV or DPP-II. From SAR results, we speculate that the S1 site of DPP8 may be larger than that of DPP-IV, which would allow the accommodation of larger C-terminal residues, such as isoquinoline or isoindoline.  相似文献   

3.
To find potent and selective inhibitors of dipeptidyl peptidase IV (DPP-IV), we synthesized a series of 2-cyanopyrrolidine with P2-site 4-substituted glutamic acid derivatives and tested their activities against DPP-IV, DPP8, and DPP-II. Analogues that incorporated a bulky substituent at the first carbon position of benzylamine or isoquinoline showed over 30-fold selectivity for DPP-IV over both DPP8 and DPP-II. From structure-activity relationship studies, we speculate that the S2 site of DPP8 might be similar to that of DPP-IV, while DPP-IV inhibitor with N-substituted glycine in the P2 site and/or with a moiety involving in hydrophobic interaction with the side chain of Phe357 might provide a better selectivity for DPP-IV over DPP8.  相似文献   

4.
anti-Substituted beta-methylphenylalanine derived amides have been shown to be potent DPP-IV inhibitors exhibiting excellent selectivity over both DPP8 and DPP9. The optimized compound exhibited good pharmacokinetic profiles in three preclinical species.  相似文献   

5.
Dipeptidyl peptidase IV (DPP-IV) inhibitors are looked to as a potential new antidiabetic agent class. A series of [(S)-gamma-(arylamino)prolyl]thiazolidine compounds in which the electrophilic nitrile is removed are chemically stable DPP-IV inhibitors. To discover a structure for the gamma-substituent of the proline moiety more suitable for interacting with the S(2) pocket of DPP-IV, optimization focused on the gamma-substituent was carried out. The indoline compound 22e showed a DPP-IV-inhibitory activity 100-fold more potent than that of the prolylthiazolidine 10 and comparable to that of NVP-DPP728. It also displayed improved inhibitory selectivity for DPP-IV over DPP8 and DPP9 compared to compound 10. Indoline compounds such as 22e have a rigid conformation with double restriction of the aromatic moiety by proline and indoline structures to promote interaction with the binding site in the S(2) pocket of DPP-IV. The double restriction effect provides a potent inhibitory activity which compensates for the decrease in activity caused by removing the electrophilic nitrile.  相似文献   

6.
A series of trans-2-aryl-cyclopropylamine derived compounds were synthesized and evaluated their biological activities against DPP-IV. The structure-activity relationships (SAR) led to the discovery of novel series of DPP-IV inhibitors, having IC50 values of <100 nM with excellent selectivity over the closely related enzymes, DPP8, DPP-II and FAP. The studies identified a potent and selective DPP-IV inhibitor 24b, which exhibited the ability to both significantly inhibit plasma DPP-IV activity in rats and improve glucose tolerance in lean mice and diet induced obese mice.  相似文献   

7.
In-house screening of the Merck sample collection identified proline derived homophenylalanine 3 as a DPP-IV inhibitor with modest potency (DPP-IV IC50=1.9 microM). Optimization of 3 led to compound 37, which is among the most potent and selective DPP-IV inhibitors discovered to date.  相似文献   

8.
DPP8 belongs to the family of prolyl dipeptidases, which are capable of cleaving the peptide bond after a penultimate proline residue. Unlike DPP-IV, a drug target for type II diabetes, no information is available on the crystal structure of DPP8, the regulation of its enzymatic activity, or its substrate specificity. In this study, using analytical ultracentrifugation and native gel electrophoresis, we show that the DPP8 protein is predominantly dimeric when purified or in the cell extracts. Four conserved residues in the C-terminal loop of DPP8 (Phe(822), Val(833), Tyr(844), and His(859)), corresponding to those located at the dimer interface of DPP-IV, were individually mutated to Ala. Surprisingly, unlike DPP-IV, these single-site mutations abolished the enzymatic activity of DPP8 without disrupting its quaternary structure, indicating that dimerization itself is not sufficient for the optimal enzymatic activity of DPP8. Moreover, these mutations not only decreased k(cat), as did the corresponding DPP-IV mutations, but also dramatically increased K(m). We further show that the K(m) effect is independent of the substrate assayed. Finally, we identified the distinctive and strict substrate selectivity of DPP8 for hydrophobic or basic residues at the P2 site, which is in sharp contrast to the much less discriminative substrate specificity of DPP-IV. Our study has identified the residues absolutely required for the optimal activity of DPP8 and its unique substrate specificity. This study extends the functional importance of the C-terminal loop to the whole family of prolyl dipeptidases.  相似文献   

9.
A series of (2S)-cyanopyrrolidines with glutamic acid derivatives at the P2 site have been prepared and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV). The structure–activity relationships (SAR) led to the discovery of potent 3-substituted glutamic acid analogues, providing enhanced chemical stability and excellent selectivity over the closely related enzymes, DPP8, DPP-II and FAP. Compound 13f exhibited the ability to both significantly decrease the glucose excursion and inhibit plasma DPP-IV activity.  相似文献   

10.
A series of 2-[3-[2-[(2S)-2-cyano-1-pyrrolidinyl]-2-oxoethylamino]-3-methyl-1-oxobutyl]-based DPP-IV inhibitors with various monocyclic amines were synthesized. The structure–activity relationships (SAR) led to the discovery of potent DPP-IV inhibitors, having IC50 values of <100 nM with excellent selectivity over the closely related enzymes, DPP-II, DPP8, DPP9 and FAP (IC50 > 20 μM). Of these compounds, the analogues 12a, 12h and 12i exhibited a long-lasting ex vivo DPP-IV inhibition in rats.  相似文献   

11.
Tang HK  Chen KC  Liou GG  Cheng SC  Chien CH  Tang HY  Huang LH  Chang HP  Chou CY  Chen X 《FEBS letters》2011,585(21):3409-3414
The dipeptidyl peptidase (DPP) family members, including DPP-IV, DPP8, DPP9 and others, cleave the peptide bond after the penultimate proline residue and are drug target rich. The dimerization of DPP-IV is required for its activity. A propeller loop located at the dimer interface is highly conserved within the family. Here we carried out site-directed mutagenesis on the loop of DPPIV and identified several residues important for dimer formation and enzymatic activity. Interestingly, the corresponding residues on DPP9 have a different impact whereby the mutations decrease activity without changing dimerization. Thus the propeller loop seems to play a varying role in different DPPs.  相似文献   

12.
Malignant gliomas exhibit abnormal expression of proteolytic enzymes that may participate in the uncontrolled cell proliferation and aberrant interactions with the brain extracellular matrix. The multifunctional membrane bound serine aminopeptidase dipeptidyl peptidase (DPP)-IV has been linked to the development and progression of several malignancies, possibly both through the enzymatic and nonenzymatic mechanisms. In this report we demonstrate the expression of DPP-IV and homologous proteases fibroblast activation protein, DPP8 and DPP9 in primary cell cultures derived from high-grade gliomas, and show that the DPP-IV-like enzymatic activity is negatively associated with their in vitro growth. More importantly, the DPP-IV positive subpopulation isolated from the primary cell cultures using immunomagnetic separation exhibited slower proliferation. Forced expression of the wild as well as the enzymatically inactive mutant DPP-IV in glioma cell lines resulted in their reduced growth, migration and adhesion in vitro, as well as suppressed glioma growth in an orthotopic xenotransplantation mouse model. Microarray analysis of glioma cells with forced DPP-IV expression revealed differential expression of several candidate genes not linked to the tumor suppressive effects of DPP-IV in previous studies. Gene set enrichment analysis of the differentially expressed genes showed overrepresentation of gene ontology terms associated with cell proliferation, cell adhesion and migration. In conclusion, our data show that DPP-IV may interfere with several aspects of the malignant phenotype of glioma cells in great part independent of its enzymatic activity.  相似文献   

13.
Dipeptidyl peptidase IV (DPP-IV) inhibitors have attracted attention as potential drugs for use in the treatment of type 2 diabetes because they prevent degradation of glucagon-like peptide-1 (GLP-1) and extend its duration of action. A series of 2-cyanopyrrolidines are among the most potent of DPP-IV inhibitors. We focused our attention on substitutions at the 3- or 4-position of 2-cyanopyrrolidines and synthesized and evaluated various derivatives. Among them, the 4-fluoro derivative was found to exhibit better DPP-IV inhibitory activity and higher plasma drug concentrations after oral administration to rats than the 4-unsubstituted derivative. We report here on the synthesis and biological data of the aforementioned derivatives.  相似文献   

14.

Background

There has been great interest in determining whether natural products show biological activity toward protein targets of pharmacological relevance. One target of particular interest is DPP-IV whose most important substrates are incretins that, among other beneficial effects, stimulates insulin biosynthesis and secretion. Incretins have very short half-lives because of their rapid degradation by DPP-IV and, therefore, inhibiting this enzyme improves glucose homeostasis. As a result, DPP-IV inhibitors are of considerable interest to the pharmaceutical industry. The main goals of this study were (a) to develop a virtual screening process to identify potential DPP-IV inhibitors of natural origin; (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits; and (c) to use the most active hit for predicting derivatives with higher binding affinities for the DPP-IV binding site.

Methodology/Principal Findings

We predicted that 446 out of the 89,165 molecules present in the natural products subset of the ZINC database would inhibit DPP-IV with good ADMET properties. Notably, when these 446 molecules were merged with 2,342 known DPP-IV inhibitors and the resulting set was classified into 50 clusters according to chemical similarity, there were 12 clusters that contained only natural products for which no DPP-IV inhibitory activity has been previously reported. Nine molecules from 7 of these 12 clusters were then selected for in vitro activity testing and 7 out of the 9 molecules were shown to inhibit DPP-IV (where the remaining two molecules could not be solubilized, preventing the evaluation of their DPP-IV inhibitory activity). Then, the hit with the highest activity was used as a lead compound in the prediction of more potent derivatives.

Conclusions/Significance

We have demonstrated that our virtual-screening protocol was successful in identifying novel lead compounds for developing more potent DPP-IV inhibitors.  相似文献   

15.
Post-translational modification of proteins is an important regulatory event. Numerous biologically active peptides that play an essential role in cancerogenesis contain an evolutionary conserved proline residue as a proteolytic-processing regulatory element. Proline-specific proteases could therefore be viewed as important "check-points". Limited proteolysis of such peptides may lead to quantitative but, importantly, due to the change of receptor preference, also qualitative changes of their signaling potential.Dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5, identical with CD26) was for many years believed to be a unique cell membrane protease cleaving X-Pro dipeptides from the N-terminal end of peptides and proteins. Subsequently, a number of other molecules were discovered, exhibiting various degree of structural homology and DPP-IV-like enzyme activity, capable of cleaving similar set of substrates. These comprise for example, seprase, fibroblast activation protein alpha, DPP6, DPP8, DPP9, attractin, N-acetylated-alpha-linked-acidic dipeptidases I, II and L, quiescent cell proline dipeptidase, thymus-specific serine protease and DPP IV-beta. It is tempting to speculate their potential participation on DPP-IV biological function(s). Disrupted expression and enzymatic activity of "DPP-IV activity and/or structure homologues" (DASH) might corrupt the message carried by their substrates, promoting abnormal cell behavior. Consequently, modulation of particular enzyme activity using e.g. DASH inhibitors, specific antibodies or DASH expression modification may be an attractive therapeutic concept in cancer treatment. This review summarizes recent information on the interactions between DASH members and their substrates with respect to their possible role in cancer biology.  相似文献   

16.
A series of substituted pyrrolidine-2,4-dicarboxylic acid amides were synthesized as potential antidiabetic agents, and many of them showed good in vitro DPP-IV inhibition (IC50 = 2-250 nM) with selectivity over DPP-II, DPP8, and FAP enzymes. Selected compounds 8c and 11a showed in vivo plasma DPP-IV inhibition after oral administration in Wistar rats.  相似文献   

17.
Based on the structures of NVP-DPP728 (1) and NVP-LAF237 (Vildagliptin, 2), three series of DPP-IV inhibitors were synthesized by linking substituted anilines, benzylamines, and phenylethylamines to (2S)-cyanopyrrolidine through a linker. More than 20 compounds were evaluated for their in vitro DPP-IV inhibition and selectivity profile over DPP-II, DPP8, and FAP enzymes. Selected compounds 5f and 7i showed in vivo plasma DPP-IV inhibition and inhibited glucose excursion in OGTT after oral administration in Wistar rats. Compound 5f (DPP-IV IC50 = 116 nM) has the potential for development as antidiabetic agent.  相似文献   

18.
Hsiung HM  Smiley DL  Zhang XY  Zhang L  Yan LZ  Craft L  Heiman ML  Smith DP 《Peptides》2005,26(10):1988-1996
Human beta-MSH(1-22) was first isolated from human pituitary as a 22-amino acid (aa) peptide derived from a precursor protein, pro-opiomelanocortin (POMC). However, Bertagna et al. demonstrated that a shorter human beta-MSH(5-22), (DEGPYRMEHFRWGSPPKD), is a true endogenous peptide produced in human hypothalamus. In this report, we demonstrated that in vitro enzymatic cleavage of native human beta-MSH(5-22) with two ubiquitous dipeptidyl peptidases (DPP), DPP-I and DPP-IV, generated two potent MC3/4R peptide analogues, beta-MSH(7-22) (GPYRMEHFRWGSPPKD) and beta-MSH(9-22) (YRMEHFRWGSPPKD). In fact, the MC4R binding affinity and functional potency of beta-MSH(7-22) (Ki=4.6 nM, EC50=0.6 nM) and beta-MSH(9-22) (Ki=5.7 nM, EC50=0.6 nM) are almost an order of magnitude greater than those of their parent peptide, beta-MSH(5-22) (MC4R, Ki=23 nM, EC50= 3nM). Furthermore, the DPP-I/DPP-IV cleaved peptide, beta-MSH(9-22), when administered intracerebroventricularly (ICV) at a dose of 3 nmol/rat, potently induced an acute negative energy balance in a diet-induced obese rat model, while its parent molecule, beta-MSH(5-22), administered at the same dose did not have any effect. These data suggest that DPP-I and DPP-IV may play a role in converting the endogenous beta-MSH(5-22) to more potent peptides that regulate energy homeostasis in the hypothalamus.  相似文献   

19.
Dipeptidyl peptidase (DPP) IV inhibitors provide a new strategy for the treatment of type 2 diabetes. Human DPP-IV gene was cloned from differentiated Caco-2 cells and expressed in Pichia pastoris. The recombinant enzyme was used in a new system for screening of DPP-IV inhibitors. By high throughput screening, a novel compound (W5188) was identified from 75,000 compounds with an IC50 of 6.5 μM. This method is highly reproducible and reliable for discovery of DPP-IV inhibitors as shown by Z′ value of 0.73 and S/N ratio of 6.89.  相似文献   

20.
The enzyme dipeptidyl-peptidase IV (DPP-IV) is recognized to be a promising target for the management of type 2 diabetes. Over the last decade, numerous synthetic molecules and more recently, peptides from dietary proteins, have been reported to be able to inhibit DPP-IV activity. Most studies that have investigated the in vitro effect of these inhibitors have used porcine or human DPP-IV. Although structurally alike, it is unclear whether these two species display similar inhibition patterns. Therefore, the objective of this study was to compare the effects of protein-derived peptides on the activity of porcine and recombinant human DPP-IV. The two species showed different inhibition susceptibility to 43 of the 62 peptide sequences investigated. While 37 protein-derived peptides were more effective at inhibiting the porcine DPP-IV, only six caused a stronger inhibition of the activity of the human enzyme. Although the peptides WR, IPIQY and WCKDDQNPHS were found to be among the most potent inhibitors of both species, the inhibitory effect was greater on the porcine enzyme than on human DPP-IV (αKi or Ki = 11.5, 13.4, 13.3 μM and 31.4, 28.2, 75.0 μM for porcine and human DPP-IV, respectively). Investigation into the mode of action of the most effective inhibitory peptides revealed that both species were inhibited in a similar manner by short fragments (≤5 amino acid residues), but that some of the longer peptides acted differently on the enzymes. This study shows that porcine DPP-IV is generally inhibited with greater potency by protein-derived peptides than is the human enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号