首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthomonas campestris pv. campestris possesses a low level of beta-galactosidase and therefore is not able to grow and produce significant amounts of xanthan gum in a medium containing lactose as the sole carbon source. In this study, a beta-galactosidase expression plasmid was constructed by ligating an X. campestris phage phi LO promoter with pKM005, a ColE1 replicon containing Escherichia coli lacZY genes and the lpp ribosome-binding site. It was then inserted into an IncP1 broad-host-range plasmid, pLT, and subsequently transferred by conjugation to X. campestris 17, where it was stably maintained. The lacZ gene under the control of the phage promoter was expressed at a high level, enabling the cells to grow in a medium containing lactose. Production of xanthan gum in lactose or diluted whey by the engineered strain was evaluated, and it was found to produce as much xanthan gum in these substrates as the cells did in a medium containing glucose.  相似文献   

2.
Xanthomonas campestris is not able to grow in lactose media. The lactose operon from Escherichia coli as part of a mini-Mu phage was integrated at random sites in the chromosome of this bacterium. Clones expressing (beta)-galactosidase were selected. The resulting strain X. campestris 204, is suitable for production of xanthan gum directly from lactose.  相似文献   

3.
AIMS: To isolate a Xanthomonas campestris strain that can use lactose directly for xanthan gum production. METHODS AND RESULTS: The presence of indigenous beta-galactosidase gene in the wild-type Xc17 was detected by PCR and Southern hybridization. Treatment of Xc17 with nitrous acid resulted in the isolation of Xc17L with a 3.5-fold elevation of beta-galactosidase activity capable of growing in lactose-based medium. Xc17L is stable for at least 100 generations in terms of beta-galactosidase expression. The amounts of xanthan produced by Xc17L in lactose-based medium are comparable to those in glucose-based medium. CONCLUSIONS: Xc17L is potentially useful for xanthan production from whey, a waste containing lactose. SIGNIFICANCE AND IMPACT OF THE STUDY: A lactose-utilizing strain of X. campestris strain can be constructed without incorporation of any exotic DNA or antibiotic resistance gene and therefore concern of a gene-modified organism and fear of a spread of an antibiotic-resistant gene are avoided.  相似文献   

4.
Summary Plasmids pUR291 and pNZ521 containing lacZ gene, maturation protein and proteinase P genes, were transferred into X. campestris either by conjugation or by transformation. Plasmid pNZ521 was also conjugally transferred into X. campestris XMT1 a transformant carrying plasmid pUR291. All the constructed strains were evaluated for xanthan gum production in either a medium of 50% whey or the same medium supplemented with 1.5% lactose or 1.5% glucose. Mixed cultures either with transconjugants or with transformants were tested for xanthan gum production as well.  相似文献   

5.
Xanthomonas genus possesses a low level of β-galactosidase gene expression and is therefore unable to produce xanthan gum in lactose-based media. In this study, we report the emergence of some natural field strains of Xanthomonas citri subsp. citri (Xcc) capable to use lactose as a sole carbon source to produce xanthan gum. From 210 Xcc strains isolated from key lime (C. aurantifolia), 27 showed the capacity to grow on lactose containing medium. Xcc lactose consuming strains demonstrated a good level of xanthan production. Amongst all, NIGEBK37 produced the greatest (14.62 g/l) amount of xanthan gum in experimental laboratory conditions. By evaluating the viscosity of the biopolymer at 25 °C, it was demonstrated that xanthan synthesized by strain NIGEBK37 has the highest viscosity (44,170.66 cP). Our results were indicative for the weakness of a commercial strain of Xanthomonas campestris pv. Campestris DSM1706 (Xcc/DSM1706) to produce xanthan in lactose containing medium.  相似文献   

6.
Xanthan gum is a polysaccharide that is widely used as stabilizer and thickener with many industrial applications in food industry. Our aim was to estimate the ability of Xanthomonas campestris ATCC 13951 for the production of xanthan gum by using whey as a growth medium, a by-product of dairy industry. X. campestris ATCC 13951 has been studied in batch cultures using a complex medium for the determination of the optimal concentration of glucose, galactose and lactose. In addition, whey was used under various treatment procedures (de-proteinated, partially hydrolyzed by β-lactamase and partially hydrolyzed and de-proteinated) as culture medium, to study the production of xanthan in a 2 l bioreactor with constant stirring and aeration. A production of 28 g/l was obtained when partially hydrolysed β-lactamase was used, which proved to be one of the highest xanthan gum production reported so far. At the same time, an effort has been made for the control and selection of the most appropriate procedure for the preservation of the strain and its use as inoculant in batch cultures, without loss of its viability and its capability of xanthan gum production. The pre-treatment of whey (whey permeate medium hydrolyzed, WPH) was very important for the production of xanthan by the strain X. campestris ATCC 13951 during batch culture conditions in a 2 l bioreactor. Preservation methods such as lyophilization, cryopreservation at various glycerol solution and temperatures have been examined. The results indicated that the best preservation method for the producing strain X. campestris ATCC 13951 was the lyophilization. Taking into account that whey permeate is a low cost by-product of the dairy industry, the production of xanthan achieved under the studied conditions was considered very promising for industrial application.  相似文献   

7.
Xanthomonas campestris produces copious amounts of a complex exopolysaccharide, xanthan gum. Nonmucoid mutants, defective in synthesis of xanthan polysaccharide, were isolated after nitrosoguanidine mutagenesis. To isolate genes essential for xanthan polysaccharide synthesis (xps), a genomic library of X. campestris DNA, partially digested with SalI and ligated into the broad-host-range cloning vector pRK293, was constructed in Escherichia coli. The pooled clone bank was conjugated en masse from E. coli into three nonmucoid mutants by using pRK2013, which provides plasmid transfer functions. Kanamycin-resistant exconjugants were then screened for the ability to form mucoid colonies. Analysis of plasmids from several mucoid exconjugants indicated that overlapping segments of DNA had been cloned. These plasmids were tested for complementation of eight additional nonmucoid mutants. A 22-kilobase (kb) region of DNA was defined physically by restriction enzyme analysis and genetically by ability to restore mucoid phenotype to 10 of the 11 nonmucoid mutants tested. This region was further defined by subcloning and by transposon mutagenesis with mini-Mu(Tetr), with subsequent analysis of genetic complementation of nonmucoid mutants. A region of 13.5 kb of DNA was determined to contain at least five complementation groups. The effect of plasmids containing cloned xps genes on xanthan gum synthesis was evaluated. One plasmid, pCHC3, containing a 12.4-kb insert and at least four linked xanthan biosynthetic genes, increased the production of xanthan gum by 10% and increased the extent of pyruvylation of the xanthan side chains by about 45%. This indicates that a gene affecting pyruvylation of xanthan gum is linked to this cluster of xps genes.  相似文献   

8.
The gum gene cluster of Xanthomonas campestris pv. campestris comprises 12 genes whose products are involved in the biosynthesis of the extracellular polysaccharide xanthan. These genes are expressed primarily as an operon from a promoter upstream of the first gene, gumB. Although the regulation of xanthan synthesis in vitro has been well studied, nothing is known of its regulation in planta. A reporter plasmid was constructed in which the promoter region of the gum operon was fused to gusA. In liquid cultures, the expression of the gumgusA reporter was correlated closely with the production of xanthan, although a low basal level of beta-glucuronidase activity was seen in the absence of added carbon sources when xanthan production was very low. The expression of the gumgusA fusion also was subject to positive regulation by rpfF, which is responsible for the synthesis of the diffusible signal factor (DSF). The expression of the gumgusA fusion in bacteria recovered from inoculated turnip leaves was maximal at the later phases of growth and was subject to regulation by rpfF. These results provide indirect support for the operation of the DSF regulatory system in bacteria in planta.  相似文献   

9.
10.
Many phytopathogenic bacteria, such as Ralstonia solanacearum, Pantoea stewartii, and Xanthomonas campestris, produce exopolysaccharides (EPSs) that aid in virulence, colonization, and survival. EPS can also contribute to host xylem vessel blockage. The genome of Xylella fastidiosa, the causal agent of Pierce's disease (PD) of grapevine, contains an operon that is strikingly similar to the X. campestris gum operon, which is responsible for the production of xanthan gum. Based on this information, it has been hypothesized that X. fastidiosa is capable of producing an EPS similar in structure and composition to xanthan gum but lacking the terminal mannose residue. In this study, we raised polyclonal antibodies against a modified xanthan gum polymer similar to the predicted X. fastidiosa EPS polymer. We used enzyme-linked immunosorbent assay to quantify production of EPS from X. fastidiosa cells grown in vitro and immunolocalization microscopy to examine the distribution of X. fastidiosa EPS in biofilms formed in vitro and in planta and assessed the contribution of X. fastidiosa EPS to the vascular occlusions seen in PD-infected grapevines.  相似文献   

11.
Mutations that block the synthesis of xanthan gum by Xanthomonas campestris B1459S-4L-II were isolated as nonmucoid colonies after treatment with ethyl methanesulfonate. Complete libraries of DNA fragments from wild-type X. campestris were cloned into Escherichia coli by using a broad-host-range cosmid vector and then transferred into each mutant strain by conjugal mating. Cloned fragments that restored xanthan gum synthesis (Xgs+; mucoidy) were compared according to restriction pattern, DNA sequence homology, and complementation of a subset of Xgs- mutations. Groups of clones that contained overlapping homologous DNA were found to complement specific Xgs- mutations. The results suggest clustering of the genetic loci involved in xanthan synthesis. The clustering occurred within three unlinked regions. Two forms of complementation were observed. In most instances, independently isolated cosmid clones that complemented a single mutation were found to be partially homologous. Less frequent was the second form of complementation, in which two cosmid clones that lacked any homologous sequences restored the mucoid phenotype to a single mutant. Finally, xanthan production was measured for wild-type X. campestris carrying multiple plasmid copies of the cloned xanthan genes.  相似文献   

12.
Four representative species from three genera of gram-negative bacteria that secrete exopolysaccharides acquired resistance to the antibiotic bacitracin by stopping synthesis of the exopolysaccharide. Xanthomonas campestris, Sphingomonas strains S-88 and NW11, and Escherichia coli K-12 secrete xanthan gum, sphingans S-88 and NW11, and colanic acid, respectively. The gumD gene in X. campestris is required to attach glucose-P to C55-isoprenyl phosphate, the first step in the assembly of xanthan. A recombinant plasmid carrying the gumD gene of X. campestris restored polysaccharide synthesis to bacitracin-resistant exopolysaccharide-negative mutants of X. campestris and Sphingomonas strains. Similarly, a newly cloned gene (spsB) from strain S-88 restored xanthan synthesis to the same X. campestris mutants. However, the intergeneric complementation did not extend to mutants of E. coli that were both resistant to bacitracin and nonproducers of colanic acid. The genetic results also suggest mechanisms for assembling the sphingans which have commercial potential as gelling and viscosifying agents.  相似文献   

13.
Xylella fastidiosa causes citrus variegated chlorosis (CVC), a destructive disease of citrus. Xylella fastidiosa forms a biofilm inside plants and insect vectors. Biofilms are complex structures involving X. fastidiosa cells and an extracellular matrix which blocks water and nutrient transport in diseased plants. It is hypothesized that the matrix might be composed of an extracellular polysaccharide (EPS), coded by a cluster of nine genes closely related to the xanthan gum operon of Xanthomonas campestris pv. campestris. To understand the role of X. fastidiosa gum genes on biofilm formation and EPS biosynthesis, we produced gumB and gumF mutants. Xylella fastidiosa mutants were obtained by insertional duplication mutagenesis and recovered after triply cloning the cells. Xylella fastidiosa gumB and gumF mutants exhibited normal cell characteristics; typical colony morphology and EPS biosynthesis were not altered. It was of note that X. fastidiosa mutants showed a reduced capacity to form biofilm when BCYE was used as the sustaining medium, a difference not observed with PW medium. Unlike X. campestris pv. campestris, the expression of the X. fastidiosa gumB or gumF genes was not regulated by glucose.  相似文献   

14.
The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and beta-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited beta-galactosidase activity in excess of 1000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and beta-galactosidase genes exhibited beta-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability.  相似文献   

15.
Genes required for xanthan polysaccharide synthesis (xps) are clustered in a DNA region of 13.5 kb in the chromosome of Xanthomonas campestris. Plasmid pCHC3 containing a 12.4-kb insert of xps genes has been suggested to include a gene involved in the pyruvylation of xanthan gum (N.E. Harding, J.M. Cleary, D.K. Caba?as, I. G. Rosen, and K. S. Kang, J. Bacteriol. 169:2854-2861, 1987). An essential step toward understanding the biosynthesis of xanthan gum and to enable genetic manipulation of xanthan structure is the determination of the biochemical function encoded by the xps genes. On the basis of biochemical characterization of an X. campestris mutant which produces pyruvate-free xanthan gum, complementation studies, and heterologous expression, we have identified the gene coding for the ketal pyruvate transferase (kpt) enzyme. This gene was located on a 1.4-kb BamHI fragment of pCHC3 and cloned in the broad-host-range cloning vector pRK404. An X. campestris kpt mutant was constructed by mini-Mu(Tetr) mutagenesis of the cloned gene and then by recombination of the mutation into the chromosome of the wild-type strain.  相似文献   

16.
The wild type of Xanthomonas campestris and a mutant strain of Zymomonas mobilis CP4, tolerant to sucrose up to 40% (w/v), were used to produce either xanthan gum or ethanol, respectively, from peach pulp supplemented with different salts. Both bacteria grew well (2.7 mg/ml for X. campestris and 1.45 mg/ml for Z. mobilis) in fine peach pulp and the production of xanthan gum or ethanol was 0.1–0.2 g/l or 110 g/l, respectively.  相似文献   

17.
18.
The Gram-negative bacterium Xylella fastidiosa was the first plant pathogen to be completely sequenced. This species causes several economically important plant diseases, including citrus variegated chlorosis (CVC). Analysis of the genomic sequence of X. fastidiosa revealed a 12 kb DNA fragment containing an operon closely related to the gum operon of Xanthomonas campestris. The presence of all genes involved in the synthesis of sugar precursors, existence of exopolysaccharide (EPS) production regulators in the genome, and the absence of three of the X. campestris gum genes suggested that X. fastidiosa is able to synthesize an EPS different from that of xanthan gum. This novel EPS probably consists of polymerized tetrasaccharide repeating units assembled by the sequential addition of glucose-1-phosphate, glucose, mannose and glucuronic acid on a polyprenol phosphate carrier.  相似文献   

19.
Free-radical induction has been employed as a novel strategy to improve bioreactor productivity and, more specifically, the quality and productivity of xanthan gum from Xanthomonas campestris cultures. A 210% increase in xanthan yield and a 20% increase in viscosity (quality) resulted from HOCl (oxidant) treatment. The acetate mass fraction in xanthan gum decreased by 42% and its pyruvate mass fraction increased by 63% as a result of HOCl treatment. The growth rate was almost unaffected by HOCl treatment. A hypothesis to explain the mechanism of xanthan gum overproduction by free-radical induction has been formulated. The significant aspects of the hypothesis, such as SoxS protein binding to the promoter region of the gum gene and the consequent increase in mRNA concentrations, have been experimentally verified.  相似文献   

20.
A CII-responsive promoter within the Q gene of bacteriophage lambda   总被引:2,自引:0,他引:2  
F H Stephenson 《Gene》1985,35(3):313-320
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号