首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three night-break experiment protocols were utilized in an attempt to help clarify the role of the circadian system in photoperiodic time measurement in the European corn borer, Ostrinia nubilalis. Larvae raised in a light-dark (LD) cycle consisting of 12 hr of light alternating with 12 hr of darkness (LD 12:12), at a constant temperature of 30 degrees C, enter a state of arrested growth and development known as diapause (Takeda and Skopik, 1985). In the present research (Experiment 1), the induction of diapause was prevented by 1-hr light pulses that systematically scanned the dark phase of LD 12:12. Thus, the importance of 12 hr of uninterrupted darkness for maximal induction of diapause is stressed. The same experimental protocol applied to larvae already in diapause (Experiment 2), however, resulted in a bimodal curve of diapause termination. Although this result is consistent with the proposition that a nonperiodic hourglass timer underlies this event (Skopik and Takeda, 1986), it does not rule out the circadian system. Like LD 12:12, a thermoperiod in constant darkness (12 hr at 4 degrees C alternating with 12 hr at 25 degrees C) also induces diapause. Scanning such a thermoperiod with 1-hr light pulses, however, resulted in only a small effect (reduction of diapause) when light fell in the early to middle part of the warm phase (Experiment 3). Thus, the time-measuring system, under these experimental conditions, showed only a weak response to light. This unexpected result is discussed with respect to Experiment 1 and two general models that have been proposed to account for photoperiodic time measurement in insects.  相似文献   

2.
Thermoperiodic induction of larval diapause was shown to occur in the European corn borer, Ostrinia nubilalis (Hübner). Using continuous darkness and thermoperiods of the format XC:24-XT(15:30°C), incidence of diapause was shown to be dependent on phase durations, with a critical cryophase of about 9.5 hr. A thermoperiodic response threshold was demonstrated; it was found to be very close to 17.5°C. Thermoperiodic amplitude (temperature difference between cryophase and thermophase) was shown to have no influence on the induction of diapause, within a relatively broad range of physiological temperatures. Thermoperiodic induction of diapause was shown to be at least partially independent from the effects of temperature on larval developmental rates.  相似文献   

3.
Adult females of Pyrrhocoris apterus, programmed for diapause by short-day (SD) photoperiod and those programmed for reproduction by long-day (LD) retain photoperiodic information in continuous darkness (DD) until death. However, if the interruption of SD by DD is made in the course of diapause programming in adults, then the incidence of diapause depends on the number of SD cycles received before DD, with no evidence that the photoperiodic clock is free-running at DD to complete diapause induction. These results indicate that the photoperiodic clock is stopped after transfer to DD and the information accumulated before transfer to DD is maintained. Diapause programming in the adult stage requires 9–10 SD cycles to induce diapause in 80% of individuals. However, if the diapause programming starts after ecdysis of LD-larvae to the last instar, only 3 SD cycles before transfer to DD are required for diapause in 80% of individuals. Surprisingly, if the newly ecdysed last instar LD-larvae, sensitive to photoperiod, are transferred to DD (thus they did not experience any SD), diapause occurs in 40% of the individuals. Thus, diapause ‘information’ is present in LD-larvae and is responsible for a lower number of SD required for diapause induction in the larval than in the adult stage.  相似文献   

4.
Abstract. The effects of thermoperiods on diapause induction in continuous darkness or under a 12 : 12 h LD photoperiod were investigated in the cabbage beetle, Colaphellus bowringi Baly, a typical short‐day species. The diapause response curves both at different constant temperatures and at the thermocycle of format CT x: (24 ? x) h (16 : 28 °C) under continuously dark rearing conditions showed that the incidence of diapause depended mainly on whether or not the mean temperature was ≤20 °C or >20 °C. If the mean temperature was ≤20 °C, all individuals entered diapause; if >20 °C, the incidence of diapause declined gradually with increasing mean temperatures. The thermocycle (CT 12 : 12 h) with a series of different cryophases (8–22 °C) and thermophases (24–32 °C) under continuous darkness demonstrated a cryophase response threshold temperature of approximately 19 °C and a thermophase response threshold temperature of approximately 31 °C. Thermoperiodic amplitude (temperature difference between cryophase and thermophase) was shown to have a significant influence on diapause induction at the mean temperatures of 22, 23 and 24 °C, but not at ≥25 °C. Thermoperiodic responses under LD 12 : 12 h clearly showed that the incidence of diapause was influenced strongly by the photophase temperature. The thermoperiod under LD 12 : 12 h induced a much lower incidence of diapause than the thermoperiod with the same temperature in continuous darkness. The ecological significance of thermoperiodic induction of diapause in this species is discussed.  相似文献   

5.
Both diapause induction and diapause termination are under photoperiodic control in the lepidopteran, Ostrinia nubilalis. In the present study, induction of diapause was maximal in light-dark (LD) cycles that contained 12 hr of light alternating with 12 hr of darkness (LD 12:12). Termination of diapause was maximal in LD 16:8. Diapause termination also occurred rapidly in non-24-hr LD cycles that possessed an 8-hr dark phase. In each of these cases, the period of the LD cycle was not important. Diapause termination did not, however, occur rapidly in non-24-hr LD cycles that lacked an 8-hr dark phase. Thus, the clock mechanism underlying the termination response resembles an hourglass in its behavior. This is in contrast with what is known about induction of diapause. Here it has been demonstrated that the circadian system is somehow involved. It is thus possible that two different physiological clocks underlie these responses.  相似文献   

6.
The influence of pupal diapause on adult eclosion rhythm of Delia antiqua was investigated. When non-diapause and diapause pupae were exposed to various photoperiods at 15, 20 and 25 °C, both of them emerged as adults close to the light-on time, but the phase of eclosion varied with photoperiod and temperature. Moreover, there was a significant difference in the eclosion time between non-diapause and diapause pupae; the eclosion peak of diapause pupae was earlier than that of non-diapause pupae. When non-diapause and diapause pupae were transferred to constant darkness (DD) after having experienced LD 12:12 at 15, 20 and 25 °C, both showed circadian rhythmicity in eclosion. Although the free-running period (τ) decreased slightly as temperature increased in both non-diapause and diapause pupae, the latter tended to show shorter τ than the former. This observation suggests that the observed difference in eclosion time in LD cycles between non-diapause and diapause pupae is due to differences in τ.  相似文献   

7.
When pupae of Delia antiqua were transferred to constant darkness (DD) from light-dark (LD) cycles or constant light (LL), the sensitivity to light of the circadian clock controlling eclosion increased with age. The daily rhythm of eclosion appeared in both non-diapause and diapause pupae only when this transfer was made during late pharate adult development. When transferred from LL to DD in the early pupal stage, the adult eclosion was weakly rhythmic in non-diapause pupae but arrhythmic in diapause pupae. However, the sensitivity of the circadian clock to temperature cycles or steps was higher in diapause pupae than in non-diapause pupae; in the transfer to a constant 20 degrees C from a thermoperiod of 25 degrees C (12 h)/20 degrees C (12 h) on day 10 after pupation or from chilling (7.5 degrees C) in DD, the adult eclosion from diapause pupae was rhythmic but that from non-diapause pupae arrhythmic. In a transfer to 20 degrees C from the thermoperiod after the initiation of eclosion, rhythmicity was observed in both types of pupae. The larval stage was insensitive to the effect of LD cycle initiating the eclosion rhythm. In D. antiqua pupae in the soil under natural conditions, therefore, the thermoperiod in the late pupal stage would be the most important 'Zeitgeber' for the determination of eclosion timing.  相似文献   

8.
Hua A  Yang D  Wu S  Xue F 《Journal of insect physiology》2005,51(11):1261-1267
In the zygaenid moth, Pseudopidorus fasciata, both larval diapause induction and termination are under photoperiodic control. In this study, we investigated whether photoperiodic time measurement (with a 24-h light-dark cycle) in this moth is qualitative or quantitative. Photoperiodic response curves, at 22, 25, and 28 degrees C indicated that the incidence of diapause depended on whether the scotophases exceeded the critical night length (CNL) or not. All scotophases longer than the CNL-induced diapause; all scotophases shorter than the CNL-inhibited diapause. The CNL was 10.5h at 25 and 28 degrees C, and 10h at 22 degrees C. By transferring from various short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, LD 12:12, and LD 13:11) to a long photoperiod (LD 16:8) at different times, the number of light-dark cycles required for 50% diapause induction at 25 degrees C was 7.14 at LD 8:16, 7.2 at LD 9:15, 7.19 at LD 10:14, 7.16 at LD 11:13, and 7.13 at LD 12:12, without showing a significant difference between the treatments. Only at LD 13:11 (near the CNL), the number of light-dark cycles was significantly increased to 7.64. The intensity of diapause induced under different short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, and LD 12:12) at 25 degrees C was not significantly different with an average diapause duration of 36 days. The duration of diapause induced under LD 13:11 was significantly reduced to 32 days. All results indicate that the night-lengths are measured as either "long" or "short" compared with some critical value and suggest that photoperiodic time measurement for diapause induction in this moth is based on a qualitative principle.  相似文献   

9.
The influence of environmental factors on the duration of diapause was evaluated in larvae of Ephestia elutella (Hübner) reared in short photo-periods at 25C or below. Termination of diapause was hastened by long photoperiods, high temperatures, long periods at low temperature, or exposure to fumigants. Diapause terminated rapidly under long photoperiods at 30 or 25C, but not at 20C. The critical photoperiod for the termination of diapause was similar to that for induction, lying between 13 and 16 h at 25C. The longest duration of diapause occurred in constant darkness (DD) at 20C. However, batches of larvae reared at 20C in DD pupated a little sooner than batches reared under LD, if both were transferred at the start of diapause to warm, long-day conditions. Long exposure to low temperature reduced the number of long photoperiods necessary for the rapid termination of diapause at high temperature. Samples of larvae brought to the laboratory at monthly intervals from an unheated outbuilding in which they were overwintering, required an average of c. 200 days to pupate in DD at 25C when transferred in December, compared with only 32 days when transferred in February or March. By comparison, batches transferred to LD 16:8 at 25C required 39 days when transferred in December and 20–24 days in February and March. Holding at low temperature for long periods also encouraged synchronous emergence of the sexes. Duration of diapause was generally shorter in a laboratory stock than in a stock collected from the field.  相似文献   

10.
Abstract. Insects and mites may measure photoperiods eitfier by classifying them as long or short relative to a critical value (qualitative time measurement) or by using the absolute value (quantitative time measurement). The spider mite Tetranychus urticae is thought to use a qualitative mechanism of time measurement. In this paper we present the results of experiments with an inbred line of the spider mite (to keep genetic variation in photoperiodic responses small), to test whether quantitative aspects also play a role. Differences in diapause incidence in different long-night photoperiods at different temperatures may be an indication of quantitative responses to photoperiod. The effect of temperature on the photoperiodic response curve was studied at 16oC, 19oC and 22oC. The response curves appeared to be similar at 16oC and 19oC, with a critical nightlength between 10 and 11 h. At 22oC, diapause induction was less than 100% in all long-night regimens and die critical nightlength had shifted to 12 h. Maximum diapause induction (93%) occurred in a light-dark cycle with a 16 h dark phase (LD 8:16 h). Diapause induction was lowest in long-night photoperiods with dark phases of 20 h and longer. The number of light-dark cycles needed for 50% diapause induction at 19oC varied. between 12.1 and 14.7 for LD 6:18 h, between 10.9 and 12.5 for LD 8:16 h, between 10.6 and 11.6 for LD 10:14 h, and between 10.1 and 10.7 for LD 12:12 h. Independent of die light-dark regimen, diapause induction took place in some individuals after receiving 8 cycles and virtually all individuals entered diapause after 16 cycles. No effect was found of the photoperiodic treatment during prediapause development (LD 6:18 h, LD 8:16 h, LD 10:14 h, LD 12:12 h) on diapause duration. The average diapause duration at LD 10:14 h and 19oC was 61 days over all four treatments. We explained the results by hypothesising that nightlengths are assessed qualitatively and mat the photoperiodic clock operates more accurately near the critical nightlength.  相似文献   

11.
Effects of temperature and thermoperiod on larval development and the induction of diapause were investigated in the European corn borer, Ostrinia nubilalis. Developmental threshold temperatures characteristic of the first four larval instars were estimated under both thermoperiods and constant temperatures. Threshold values were similar under the two conditions, but the 4th-larval instar was shown to display a significantly lower developmental threshold temperature than was characteristic of the earlier instars. Although developmental times (days per instar) were not greatly affected by fluctuating temperature regimes, the quantity of growth (weight, head width) during the 4th and 5th (last) stadia was found to be much greater under thermoperiodic regimes than under comparable constant temperature conditions. By means of thermoperiodic regimes having identical mean temperatures but different cryophase durations, it was demonstrated that the induction of diapause is dependent on the duration of the cryophase rather than on the mean temperature of the thermoperiod. To be effective, the cryophase must be colder than the insect's thermoperiodic response threshold. It was also demonstrated that thermoperiodic responses that are readily produced under continuously dark rearing conditions are not manifested under continuous light.  相似文献   

12.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

13.
The effects of thermoperiods on diapause induction under continuous darkness (DD), continuous light (LL), and an L12:D12 photoperiod were investigated in the cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), a short‐day species. Diapause could be induced by thermoperiod under both LL and DD; however, in the range of 24–30 °C, lower incidences of diapause were observed under LL than under DD. The critical cryophase was found to be dependent on the mean temperature of the thermoperiod applied. Although the thermoperiodic response pattern was similar under LL and DD, the incidence of diapause was higher under LL when the duration of the cryophase did not exceed 12 h. In contrast, when the duration of the cryophase was longer than 12 h, the incidence of diapause under LL was lower or equal to that under DD. When a thermoperiod of 24 °C (cryophase) and 28 °C (thermophase) was applied, the incidence of diapause was higher under LL than under DD, regardless of the duration of the cryophase. Thermoperiodic responses under a photoperiod of L12:D12 and under DD further revealed that induction of diapause was strongly influenced by the photophase temperature. Moreover, the incidence of diapause was lower when the thermophase coincided with the photophase than when the cryophase coincided with the photophase.  相似文献   

14.
Diapause induction and termination responses of a northern strain (Minnesota [MN]) of Ostrinia nubilalis were compared with those of a southern strain (Georgia [GA]). A thermoperiod in constant light (12 hr at 25 degrees C alternating with 12 hr at 4 degrees C) failed to induce diapause in GA larvae, but approximately 50% diapause induction was observed in the MN population. Moreover, the 50% of MN larvae that continued their development (i.e., underwent pupation and adult development) did so at a slower rate, as measured by days to pupation, than GA larvae. In the laboratory, diapausing MN larvae responded more slowly to the optimal light-dark (LD) cycle for terminating diapause, LD 16:8, than did GA larvae. In the field MN populations are univoltine (i.e., are characterized by one generation per year). A delayed termination response in the spring, coupled with a longer critical daylength for diapause induction as daylength decreases during late summer (earlier diapause) restricts the time during which development can occur as contrasted with GA populations. In addition, it is postulated that these two phenomena, coupled with a possibly slower growth rate in the MN insects as revealed under laboratory conditions, may collectively represent the basis for univoltinism in the field.  相似文献   

15.
The effect of various combinations of photoperiod and temperature on the induction and termination of the mature larval diapause of a Missouri strain of the southwestern corn borer. Diatraea grandiosella, was examined. Larval exposure to regimes in which the low phase of a 30°:23°C thermoperiod coincided with a scotophase of 10 to 14 hr duration led to high incidence of diapause. Larval exposure to 30°:24°C, 33°:21°C, and 36°:18°C thermoperiods with half cycles of 12 hr in continuous darkness yielded a diapause incidence of 16%, 22%, and 59%, respectively, whereas exposure to a 30°:24°C thermoperiod in continuous illumination yielded a completely nondiapause generation. Larval exposure to one of a series of 36°:18°C thermoperiods in which the duration of the high phase was increased in 2 hr increments from 0 to 24 hr in continuous darkness showed that “short-day” thermoperiods yielded a high incidence of diapause. However, no clearly defined critical thermoperiod was observed. An examination of photoperiodic and thermoperiodic effects on diapause development showed that, in general, those combinations of temperature and light cycles which were diapause inductive also retarded diapause development. The relationship between seasonal photoperiods and thermoperiods in southeastern Missouri was examined.  相似文献   

16.
Some effects of thermoperiods on the photoperiodic determination of larval diapause in the European corn borer, Ostrinia nubilalis are reported. Thermoperiods and photoperiods were shown to interact to a highly significant degree in the induction of diapause. Diapause determination was found to be sensitive to the duration and temperature of the cryoscotophase of the thermophotoperiod; the thermophotophase characteristics exerted only minor influence. Cryoscotophase temperatures of 10°C or lower caused an unexpected increase in the apparent critical nightlength for diapause determination. A 0°C cryoscotophase effectively prevented the photoperiodic determination of diapause. Experimental investigation of the effects of 0°C cryoscotophases produced evidence that such low-temperature cryoscotophases may suppress the biological clock functions regulating the determination of diapause. Photoperiodic regimes in which 0°C pulses were inserted at successive points in 24-h cycle evoked responses suggesting that the early scotophase (saturation phase) was more strongly influenced by the low temperature pulse than was the later scotophase (scotonon); low temperature had little effect on the light-dependent processes (photonon) associated with the photophase.  相似文献   

17.
When non-diapause and diapause pupae of Deliaantiqua were exposed to various thermoperiods where thermophase (T) was 25 °C and the cryophase (C) was 15 or 20 °C (TC15 or TC20) in constant darkness (DD), the majority of both types of flies emerged before the rise in temperature. Eclosion time was delayed at the lower cryophase temperature. Moreover, there was a significant difference in the time of adult eclosion between non-diapause and diapause pupae; diapause pupae eclosed earlier than non-diapause pupae. When the two types of pupae were transferred to a constant low temperature (15 or 20 °C) after having experienced TC15 or TC20 12:12 h, they showed circadian rhythmicity in eclosion. The free-running period (τ) of the eclosion rhythm changed after transfer to constant low temperatures in both non-diapause and diapause pupae, suggesting that this change represents a transient cycle until the temperature-sensitive oscillator is coupled again to the temperature-insensitive pacemaker. However, diapause pupae tended to show a shorter τ than non-diapause pupae. This observation suggests that the difference in adult eclosion time under thermoperiodic conditions between non-diapause and diapause pupae is related to their different τ s.  相似文献   

18.
Photoperiodic control of diapause induction was systematically investigated in the cabbage butterfly, Pieris melete, which enters summer and winter diapause as a pupa. Summer and winter diapause are induced principally by short and long scotophases, respectively; the intermediate scotophases (11-12 h) permit pupae to develop without diapause. Photoperiodic responses under 24-h light-dark cycles at 16.9, 18, 20 and 22 °C showed that the hibernation response was temperature compensated, whereas aestivation response was strongly temperature-dependent. The incidence of diapause for both aestivation and hibernation showed a decline at the ultra-short and ultra-long scotophases. Experiments using non-24-h light-dark cycles showed that the length of the scotophase played an essential role in the determination of diapause. The highest photosensitivity differed under hibernation and aestivation conditions. With a 3 × LD 12:12 interruption, a maximal inhibition of aestivation occurred in the L3/2 stage, and of hibernation it occurred in the L4/0 stage. A long-night of LD 10:14 induced hibernation diapause but inhibited aestivation diapause and, conversely, a short-night of LD 14:10 inhibited hibernation diapause but induced aestivation diapause. With a 1-h light pulse at LD 11:13, a maximal inhibition of hibernation occurred 3 h before lights-on (late scotophase), whereas, with a 1-h light pulse at LD 12.5:11.5, a maximal induction of aestivation occurred 2-3 h after the onset of darkness (early scotophase). Nanda-Hamner and Bünsow experiments failed to reveal the involvement of a circadian system, suggesting that the photoperiodic time measurement for diapause induction in this butterfly resembles an hourglass-like timer or a damped circadian oscillator.  相似文献   

19.
Thyrassia penangae enters winter diapause as a prepupa in a cocoon. Photoperiodism of diapause induction was systematically investigated in this moth. The photoperiodic response curves under 24-h light-dark cycles showed that this insect is a typical long-day species. The critical daylength was 13 h 30 min at 25 °C, 13 h at 30 °C and 12 h 20 min at 28 °C. Transferring experiments from a short day (LD 12:12) to a long day (LD 15:9) or vice versa indicated that photoperiodic sensitivity mainly occurs during the larval period. In experiments using non-24-h light-dark cycles, when the length of photophase exceeded the critical daylength (13.5 h), was diapause inhibited effectively, even when the length of scotophase exceeded the critical nightlength (10.5 h). Only when a long scotophase was combined with a short photophase, diapause was induced effectively. This result suggests that daylength measurement is more important than nightlength measurement in T. penangae. Night interruption experiments under 24-h light-dark cycles exhibited two points of apparent light sensitivity, but the photosensitive position was highly influenced by temperature and the length of scotophase. Nanda-Hamner experiments failed to reveal the involvement of a circadian system in this photoperiodic time measurement. All light-dark cycles from LD 12:12 to LD 12:72 resulted in a short day response, and all cycles from LD 14:4 to LD 14:72 resulted in a long day response, suggesting that photoperiodic time measurement in this moth is performed by a day-interval timer or an hourglass-like clock.  相似文献   

20.
Facultative diapause of Eotetranychus smithi appears to occur at the egg stage and is induced by temperatures ≤17.5 °C, independent of photoperiod. However, the effect of thermoperiod on the induction of diapause remains unclear. To answer this question, we exposed female E. smithi to various thermoperiods under constant light conditions. First, we found that the deposition order of eggs affected the incidence of diapause: the first eggs (exclusively males) tended to avert diapause compared with the second and third eggs (most of them are females), possibly because of the sex of the eggs. Next, the incidence of diapause of the second eggs decreased with shortening of the cryophase, which was associated with an increase of the average temperature, and it showed clear long‐day‐type thermoperiodic response curves. However, this species does not sense the ratio of day (thermophase) to night (cryophase) of a given thermoperiod. Short thermoperiods did not increase the incidence of diapause, but rather precluded the entry into diapause. We detected no sign of the involvement of the circadian system in diapause induction in the thermoperiodic Nanda–Hamner protocol. We conclude that diapause induction of E. smithi does not involve the circadian system, and thus does not show thermoperiodism. Diapause induction under the various thermoperiodic conditions tested in the present study appears to be derived from the temperature itself. E. smithi is an exceptional species that relies on temperature alone to induce diapause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号