首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercial β-galactosidase from Aspergillus oryzae (SUMILACT LTM) was used for the bioconversion of the ginsenosides Rb1, Rb2, Rc, Rd, and Rg3 to gypenoside-XVII, compound-O, compound-MC1, F2, and Rh2, respectively. The optimal conditions were pH 4.5, 50?°C, 60?U·mL?1 enzyme, and 8.0?mM substrate. Interestingly, the enzyme hydrolyzed only the outer β-(1,2)-d-glucose linkage at the C-3 position of ginsenosides. Under optimum conditions, the enzyme completely converted Rb1, Rb2, Rc, Rd, and Rg3 to gypenoside-XVII, compound-O, compound-MC1, F2, and Rh2, respectively, with the highest productivity.  相似文献   

2.
Many studies have focused on the free-radical-initiated peroxidation of membrane lipid, which is associated with a variety of pathological events. Panax ginseng is used in traditional Chinese medicine to enhance stamina and capacity to deal with fatigue and physical stress. Many reports have been devoted to the effects of ginsenosides, the major active components in P. ginseng, on the lipid metabolism, immune function and cardiovascular system. The results, however, are usually contradictory since the usage of mixture of ginsenosides cannot identify the function of every individual ginsenosides on the experimental system. On the other hand, every individual ginsenosides is not compared under the same experimental condition. These facts motivate us to evaluate the antioxidant effect of various individual ginsenosides on the experimental system of free-radical-initiated peroxidation: the hemolysis of human erythrocyte induced thermally by water-soluble initiator, 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). The inhibitory concentration of 50% inhibition (IC(50)) of AAPH-induced hemolysis of the erythrocyte has been studied firstly and found that the order of IC(50) is Rb3 - Rb1Rc>Re>Rh1>R1>Rg2>Rb3. Rg3, Rd and Rh2, however, act as synergistic prooxidants in the above experimental system. Rg1 does not show any synergistic antioxidative property. Although the antioxidative and prooxidative mechanism of various ginsenosides with or without TOH in AAPH-induced hemolysis of human erythrocytes will be further studied in detail, this information may be useful in the clinical usage of ginsenosides.  相似文献   

3.
Many studies have focused on the free-radical-initiated peroxidation of membrane lipid, which is associated with a variety of pathological events. Panax ginseng is used in traditional Chinese medicine to enhance stamina and capacity to deal with fatigue and physical stress. Many reports have been devoted to the effects of ginsenosides, the major active components in P. ginseng, on the lipid metabolism, immune function and cardiovascular system. The results, however, are usually contradictory since the usage of mixture of ginsenosides cannot identify the function of every individual ginsenosides on the experimental system. On the other hand, every individual ginsenosides is not compared under the same experimental condition. These facts motivate us to evaluate the antioxidant effect of various individual ginsenosides on the experimental system of free-radical-initiated peroxidation: the hemolysis of human erythrocyte induced thermally by water-soluble initiator, 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH). The inhibitory concentration of 50% inhibition (IC50) of AAPH-induced hemolysis of the erythrocyte has been studied firstly and found that the order of IC50 is Rb3∼Rb1≪Rg2<Re<Rg1∼Rc<Rh1<R1. Rb1, Rc and Rg2, as antioxidants, can prolong the lag time of hemolysis. Contrarily, Rg3, Rd and Rh1, together with high concentration of Rb3, Rg1 and Rh2, function as prooxidants to accelerate AAPH-induced hemolysis. The addition of Re does not influence the lag time of hemolysis. The R1 with the concentration ranging from 10 to 20 μM decreases the lag time of hemolysis. These results suggest that there is a mutual interaction that existed in the molecule of ginsenosides since the difference of the structure of ginsenosides is only due to the connective position and type of sugar moieties to the ring of a triterpene dammarane. Moreover, the synergistic antioxidative properties of various individual ginsenosides with α-tocopherol (TOH) are also discussed, and it was found that the order of synergistic antioxidative properties with TOH is Rb1>Rc>Re>Rh1>R1>Rg2>Rb3. Rg3, Rd and Rh2, however, act as synergistic prooxidants in the above experimental system. Rg1 does not show any synergistic antioxidative property. Although the antioxidative and prooxidative mechanism of various ginsenosides with or without TOH in AAPH-induced hemolysis of human erythrocytes will be further studied in detail, this information may be useful in the clinical usage of ginsenosides.  相似文献   

4.
Herein, a novel ginsenosidase, named ginsenosidase type IV, hydrolyzing 6-O-multi-glycosides of protopanaxatrioltype ginsenosides (PPT), such as Re, R1, Rf, and Rg2, was isolated from the Aspergillus sp. 39g strain, purified, and characterized. Ginsenosidase type IV was able to hydrolyze the 6-O-alpha-L-(1-->2)-rhamnoside of Re and the 6-O-beta-D- (1-->2)-xyloside of R1 into ginsenoside Rg1. Subsequently, it could hydrolyze the 6-O-beta-D-glucoside of Rg1 into F1. Similarly, it was able to hydrolyze the 6-O-alpha-L-(1-->2)- rhamnoside of Rg2 and the 6-O-beta-D-(1-->2)-glucoside of Rf into Rh1, and then further hydrolyze Rh1 into its aglycone. However, ginsenosidase type IV could not hydrolyze the 3-O- or 20-O-glycosides of protopanaxadioltype ginsenosides (PPD), such as Rb1, Rb2, Rb3, Rc, and Rd. These exhibited properties are significantly different from those of glycosidases described in Enzyme Nomenclature by the NC-IUBMB. The optimal temperature and pH for ginsenosidase type IV were 40°C and 6.0, respectively. The activity of ginsenosidase type IV was slightly improved by the Mg(2+) ion, and inhibited by Cu(2+) and Fe(2+) ions. The molecular mass of the enzyme, based on SDS-PAGE, was noted as being approximately 56 kDa.  相似文献   

5.
Ginsenoside Rg3, a known anti-cancer agent, is usually prepared by enzyme-mediated and acid hydrolysis of ginsenoside Rb1 and Rd. In this study, we used the bacterium Cellulosimicrobium cellulans sp. 21 to transform Rb1 into Rg3. When Rb1 was used as the sole substrate, the transformation products included Rg3, Rh2, C-K and PPD. However, when Rb1 and Re were mixed, the yield of Rg3 was significantly higher, indicating that Re attenuates the activity of β-1,2-glucosidase secreted by C. cellulans sp. 21. β-1,2-glucosidase hydrolyzes the β-1,2-glucose moiety at the C-3 position of Rb1, but Re dose not modify enzymes that produce Rg3 by hydrolyzing glucose at the C-20 position in aglycon. We also tested the inhibitory effects from various ginsenosides on β-1,2-glucosidase, and discovered that sugar chains played key roles in inhibiting β-1,2 glucosidase activity, whereas aglycones of protopanaxadiol and protopanaxatriol had little inhibitory effects. Some sugar chains with different linkages, such as C-20, C-3 and C-6, exhibited different inhibitory effects. Overall, our findings demonstrate that a combination of substrates, in addition to microorganism-secreted enzymes, can be used for selective biotransformation. This approach provides a novel strategy for natural product preparations via microbial transformation.  相似文献   

6.
A total of 58 isolates of β-glucosidase-producing microorganisms were isolated from soil around the wild ginseng roots under forest using Esculin-R2A agar. Among these isolates, strain GS33 showed a strong ability to convert ginsenosides Rb1, Rb2, Rc, and Rd into F2, Rg3, C-K, and convert ginsenoside Rg1 into Rh1, and F1. Fermented ginseng products can inhibit ES-2 cells growth and the IC50 value was 0.73 mg ml?1. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain GS33 belongs to the genus Penicillium and is most closely related to Penicillium simplicissimum (99 %).  相似文献   

7.
Ginsenosides Re and Rg1 were transformed by recombinant β-glucosidase (Bgp1) to ginsenosides Rg2 and Rh1, respectively. The bgp1 gene consists of 2,496?bp encoding 831 amino acids which have homology to the glycosyl hydrolase families 3 protein domain. Using 0.1?mg enzyme ml(-1) in 20?mM sodium phosphate buffer at 37°C and pH 7.0, the glucose moiety attached to the C-20 position of ginsenosides Re and Rg1, was removed: 1?mg ginsenoside Re ml(-1) was transformed into 0.83?mg Rg2?ml(-1) (100% molar conversion) after 2.5?h and 1?mg ginsenoside Rg1?ml(-1) was transformed into 0.6?mg ginsenoside Rh1?ml(-1) (78% molar conversion) in 15?min. Using Bgp1 enzyme, almost all initial ginsenosides Re and Rg1 were converted completely to ginsenosides Rg2 and Rh1. This is the first report of the conversion of ginsenoside Re to ginsenoside Rg2 and ginsenoside Rg1 to ginsenoside Rh1 using the recombinant β-glucosidase.  相似文献   

8.
土生曲霉转化三七中药材的研究   总被引:2,自引:0,他引:2  
从土壤真菌中筛选出直接转化中药材三七化学成分的菌株YM31966,经鉴定该菌株为土生曲霉(Aspergillus terreus).以固态转化方式,结合化学提取分离方法,通过高效液相色谱、核磁共振及质谱等波谱检测,该菌株转化三七产物由三七皂苷nR2 、RX1和人参皂苷Rg1、Rd、Rh1、Rh4构成主体成分,而原三七成分Rb1、Rc、Re和R1、R3,R6等物质被分解.结果表明,土生曲霉是一株能转化中药材三七的微生物,它具有改变原三七化学成分,形成新化合物,以及提高某些原化合物成分含量的作用.  相似文献   

9.
Most of the known pharmacological effects of Panax ginseng on the central nervous system are due to its major components - ginsenosides. Although the antioxidant ability of ginseng root has already been established, this activity has never been evaluated for isolated ginsenosides on astrocytes. The activity of protopanaxadiols Rb(1), Rb(2), Rc and Rd, and protopanaxatriols Re and Rg(1) was evaluated in vitro on astrocytes primary culture by means of an oxidative stress model with H(2)O(2). The viability of astrocytes was determined by the MTT reduction assay and by the LDH release into the incubation medium. The effects on the antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidases (GPx) and glutathione reductase (GR) and on the intracellular reactive oxygen species (ROS) formation were also investigated. Exposure of astrocytes to H(2)O(2) decreased cell viability as well as the antioxidant enzymes activity and increased ROS formation. Oxidative stress produced significant cell death that was reduced by previous treatment with the tested ginsenosides. Ginsenosides Rb(1), Rb(2), Re and Rg(1) were effective in reducing astrocytic death, while Rb(1), Rb(2), Rd, Re and Rg(1) decreased ROS formation, ginsenoside Re being the most active. Ginsenosides from P. ginseng induce neuroprotection mainly through activation of antioxidant enzymes.  相似文献   

10.
To increase the contents of medicinally effective ginsenosides, we used high-temperature and high-pressure thermal processing of ginseng by exposing it to microwave irradiation. To determine the anti-melanoma effect, the malignant melanoma SK-MEL-2 cell line was treated with an extract of microwave-irradiated ginseng. Microwave irradiation caused changes in the ginsenoside contents: the amounts of ginsenosides Rg1, Re, Rb1, Rb2, Rc, and Rd were disappeared, while those of less polar ginsenosides, such as Rg3, Rg5, and Rk1, were increased. In particular, the contents of Rk1 and Rg5 markedly increased. Melanoma cells treated with the microwave-irradiated ginseng extract showed markedly increased cell death. The results indicate that the microwave-irradiated ginseng extract induced melanoma cell death via the apoptotic pathway and that the cytotoxic effect of the microwave-irradiated ginseng extract is attributable to the increased contents of specific ginsenosides.  相似文献   

11.
This study focuses on the cloning, expression, and characterization of recombinant ginsenoside hydrolyzing glycosidase from Sanguibacter keddieii in order to biotransform ginsenosides efficiently. The gene, termed bglSk, consists of 1857bp and revealed significant homology to that of glycoside hydrolase family 3. The enzyme was over-expressed in Escherichia coli BL21 (DE3) using a GST-fused pGEX 4T-1 vector system. The over-expressed recombinant enzymes could convert six major ginsenosides Rb(1), Rb(2), Rc, Rd, Re and Rg(1) into more pharmacologically active rare ginsenosides such as C-Y, C-Mc, C-K, Rg(2)(S), and F(1). Especially, BglSk could completely convert the Rg(1) into F(1). The GST-fused BglSk was purified with GST·bind agarose resin and then characterized. The kinetic parameters for β-glucosidase had apparent K(m) values of 0.456±0.009 and 0.167±0.003mM and V(max) values of 30.2±0.7 and 4.1±0.1μmolmin(-1)mg of protein(-1) against p-nitrophenyl-β-d-glucopyranoside and Rb(1), respectively.  相似文献   

12.
Yousef LF  Bernards MA 《Phytochemistry》2006,67(16):1740-1749
The role of ginseng saponins (ginsenosides) as modulators or inhibitors of disease is vague, but our earlier work supports the existence of an allelopathic relationship between ginsenosides and soilborne microbes. Interestingly, this allelopathy appears to significantly promote the growth of the important ginseng pathogen, Pythium irregulare while inhibiting that of an antagonistic non-pathogenic fungus, Trichoderma hamatum. Herein we report on the apparent selective metabolism of 20(S)-protopanaxadiol ginsenosides by an extracellular glycosidase from P. irregulare. Thus, when P. irregulare was cultured in the presence of a purified (> 90%) ginsenoside mixture, nearly all of the 20(S)-protopanaxadiol ginsenosides (Rb1, Rb2, Rc, Rd, and to a limited extent G-XVII) were metabolized into the minor ginsenoside F2, at least half of which appears to be internalized by the organism. No metabolism of the 20(S)-protopanaxatriol ginsenosides (Rg1 and Re) was evident. By contrast, none of the ginsenosides added to the culture medium of the non-pathogenic fungus T. hamatum were metabolized. The metabolism of 20(S)-protopanaxadiol ginsenosides by P. irregulare appears to occur through the hydrolysis of terminal monosaccharide units from disaccharides present at C-3 and/or C-20 of ginsenosides Rb1, Rc, Rb2, Rd and G-XVII to yield one major product, ginsenoside F2 and one minor product (possibly G-III). A similar transformation of ginsenosides was observed using a crude protein preparation isolated from the spent medium of P. irregulare cultures.  相似文献   

13.
Over the past several decades, the pharmacological effects of ginsenosides in Panax ginseng roots have been extensively investigated. Here, we developed a method for producing specific ginsenosides (F1 and F2) with good yields (F1:162 mg/g, F2:305 mg/g) using ??-glycosidase purified from Aspergillus niger. In addition, each ginsenoside (at least 25 species) was separated and purified by high performance liquid chromatography (HPLC) using five different types of solvents and different purification steps. In addition, the Rg3:Rh2 mixture (1:1, w/w) was shown to inhibit a specific lung cancer cell line (NCI-H232) in vivo, displaying an anticancer effect at a dose lower than achieved using treatments with single Rg3 or Rh2. This finding suggests that the combination of ginsenosides for targeting anticancer is more effective than the use of a single ginsenoside from ginseng or red ginseng.  相似文献   

14.
Ginsenosides, major active ingredients of Panax ginseng, are known to regulate the excitatory ligand-gated ion channel activity. Recent reports showed that ginsenosides attenuate nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides also affect the inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human glycine alpha1 receptor channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. Treatment of ginsenoside Rf enhances glycine-induced inward peak current (IGly) with dose dependent and reversible manner but ginsenoside Rf itself did not elicit membrane currents. The half-stimulatory concentrations (EC50) of ginsenoside Rf was 49.8 +/- 8.9 microM. Glycine receptor antagonist strychnine completely blocked the inward current elicited by glycine plus ginsenoside Rf. Cl- channel blocker 4,4'-disothiocyanostilbene-2,2'-disulfonic acid (DIDS) also blocked the inward current elicited by glycine plus ginsenoside Rf. We also tested the effect of eight individual ginsenosides (i.e., Rb1, Rb2, Rc, Rd, Re, Rg1, Rg2, and Ro) in addition to ginsenoside Rf. We found that five of them significantly enhanced the inward current induced by glycine with the following order of potency: Rb1 > Rb2 > Rg2 > or = Rc > Rf > Rg1 > Re. These results indicate that ginsenosides might regulate gylcine receptor expressed in Xenopus oocytes and this regulation might be one of the pharmacological actions of Panax ginseng.  相似文献   

15.
目的:建立高效液相色谱法同时测定人参皂苷Rb1、Rc、Rd、Rg3、CK和Rh2的方法.方法:采用ODSC18(4.6 mm×150 mm)色谱柱,流动相乙腈-0.05%磷酸水,梯度洗脱,流速1 Ml/min,检测波长203 nm,柱温35 ℃.结果:人参皂苷Rb1、Rc、Rd、Rg3、CK和Rh2分离效果良好,线性关...  相似文献   

16.
Schlag EM  McIntosh MS 《Phytochemistry》2006,67(14):1510-1519
The contents of five ginsenosides (Rg1, Re, Rb1, Rc and Rd) were measured in American ginseng roots collected from 10 populations grown in Maryland. Ginsenoside contents and compositions varied significantly among populations and protopanaxatriol (Rg1 and Re) ginsenosides were inversely correlated within root samples and among populations. The most abundant ginsenoside within a root and by population was either Rg1 or Re, followed by Rb1. Ginseng populations surveyed grouped into two chemotypes based on the relative compositions of Rg1 and Re. Four populations, including the control population in which plants were grown from TN and WI seed sources, contained roots with the recognized chemotype for American ginseng of low Rg1 composition relative to Re. The remaining 6 populations possessed roots with a distinctive chemotype of high relative Rg1 to Re compositions. Chemotype did not vary by production type (wild versus cultivated) and roots within a population rarely exhibited chemotypes different from the overall population chemotype. These results provide support for recent evidence that relative Rg1 to Re ginsenoside contents in American ginseng roots vary by region and that these differences are likely influenced more by genotype than environmental factors. Because the physiological and medicinal effects of different ginsenosides differ and can even be oppositional, our findings indicate the need for fingerprinting ginseng samples for regulation and recommended usage. Also, the High Rg1/Low Re chemotype discovered in MD could potentially be used therapeutically for coronary health based on recent evidence of the positive effects of Rg1 on vascular growth.  相似文献   

17.
Endophytes may participate in the conversion of metabolites within medicinal plants, influencing the efficacy of host. However, the distribution of endophytes within medicinal plants P. notoginseng and how it contributes to the conversion of saponins are not well understood. Here, we determined the distribution of saponins and endophytes within P. notoginseng compartments and further confirm the saponin conversion by endophytes. We found metabolites showed compartment specificity within P. notoginseng. Potential saponin biomarkers, such as Rb1, Rg1, Re, Rc and Rd, were obtained. Endophytic diversity, composition and co-occurrence networks also showed compartment specificity, and bacterial alpha diversity values were highest in root compartment, consistently decreased in the stem and leaf compartments, whereas those of fungi showed the opposite trend. Potential bacterial biomarkers, such as Rhizobium, Bacillus, Pseudomonas, Enterobacter, Klebsiella, Pantoea and fungal biomarkers Phoma, Epicoccum, Xylariales, were also obtained. Endophytes related to saponin contents were found by Spearman correlation analysis, and further verification experiments showed that Enterobacter chengduensis could convert ginsenoside Rg1 to F1 at a rate of 13.24%; Trichoderma koningii could convert ginsenoside Rb1 to Rd at a rate of 40.00% and to Rg3 at a rate of 32.31%; Penicillium chermesinum could convert ginsenoside Rb1 to Rd at a rate of 74.24%.  相似文献   

18.
The effects of methyl jasmonate (MJ) elicitation on the cell growth and accumulation of ginsenoside in 5-l bioreactor suspension cultures of Panax ginseng were investigated. Ginsenoside accumulation was enhanced by elicitation by MJ (in the range 50–400 M); however, fresh weight, dry weight and growth ratio of the cells was strongly inhibited by increasing MJ concentration. The highest ginsenoside yield was obtained at 200 M MJ. In the second experiment, 200 M MJ was added on day 15 during the cultivation. The ginsenoside, Rb group, and Rg group ginsenoside content increased 2.9, 3.7, and 1.6 times, respectively, after 8 days of MJ treatment. Rb group gisnsenosides accumulated more than Rg group ginsenosides. Among Rb group ginsenosides, Rb1 content increased significantly by four times but the contents of Rb2, Rc and Rd increased only slightly. Among Rg group ginsenosides, Rg1 and Re showed 2.3-fold and 3.0-fold increments, respectively, whereas there was only a slight increment in Rf group ginsenosides. These results suggest that MJ elicitation is beneficial for ginsenoside production using 5-l bioreactor cell suspension cultures.  相似文献   

19.
In this paper, the kinetics of a cloned special glucosidase, named ginsenosidase type III hydrolyzing 3-O-glucoside of multi-protopanaxadiol (PPD)-type ginsenosides, were investigated. The gene (bgpA) encoding this enzyme was cloned from a Terrabacter ginsenosidimutans strain and then expressed in E. coli cells. Ginsenosidase type III was able to hydrolyze 3-O-glucoside of multi-PPD-type ginsenosides. For instance, it was able to hydrolyze the 3-O-β-D-(1-->2)-glucopyranosyl of Rb1 to gypenoside XVII, and then to further hydrolyze the 3-O-β-D-glucopyranosyl of gypenoside XVII to gypenoside LXXV. Similarly, the enzyme could hydrolyze the glucopyranosyls linked to the 3-O- position of Rb2, Rc, Rd, Rb3, and Rg3. With a larger enzyme reaction Km value, there was a slower enzyme reaction speed; and the larger the enzyme reaction Vmax value, the faster the enzyme reaction speed was. The Km values from small to large were 3.85 mM for Rc, 4.08 mM for Rb1, 8.85 mM for Rb3, 9.09 mM for Rb2, 9.70 mM for Rg3(S), 11.4 mM for Rd and 12.9 mM for F2; and Vmax value from large to small was 23.2 mM/h for Rc, 16.6 mM/h for Rb1, 14.6 mM/h for Rb3, 14.3 mM/h for Rb2, 1.81mM/h for Rg3(S), 1.40 mM/h for Rd, and 0.41 mM/h for F2. According to the Vmax and Km values of the ginsenosidase type III, the hydrolysis speed of these substrates by the enzyme was Rc>Rb1>Rb3>Rb2>Rg3(S)>Rd>F2 in order.  相似文献   

20.
The contents of ginsenosides in Panax ginseng not only vary in different parts of the root, but also exhibit yearly variation. In this study, an HPLC-MS method was established in order to simultaneously analyse ginsenosides Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1 and Rg2. The concentration of ginsenosides in the tap root and root fibre were compared and the yearly variations of nine ginsenosides elucidated. The results indicate that the total content of ginsenosides in the main root and the root fibre both attain a maximum level in the fourth year of growth, although the amount in the former is much higher than in the latter. The variation in the content of ginsenosides during a 2-6 year period suggests that cultivated P. Ginseng can be harvested after the fourth year. The current results will provide useful information for the quality control and good agricultural practice farming of ginseng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号