共查询到20条相似文献,搜索用时 0 毫秒
1.
Amino-sugar transport systems of Escherichia coli K12 总被引:7,自引:0,他引:7
Glucosamine, mannose and 2-deoxyglucose enter Escherichia coli by the phosphotransferase system coded for by the gene ptsM. The glucosamine- and mannose-negative, deoxyglucose-resistant phenotype of ptsM mutants can be suppressed by a mutation mapping near ptsG that allows constitutive expression of the glucose phosphotransferase coded for by the gene ptsG. N-Acetylglucosamine enters E. coli by two distinct phosphotransferase systems (White, 1970). One of these is the PtsM system, the other is coded for by a gene which maps near the nagA,B genes at about min 15 on the E. coli chromosome. We propose that this gene be designated ptsN. Strains with either of these components of the phosphotransferase system will utilize N-acetylglucosamine as sole carbon source. 相似文献
2.
Two nucleoside transport systems have been verified and separated by mating and recombination experiments. The recipient strain was a mutant which is negative for transport of all nucleosides. The two systems differ in specificity and in regulation. One system transports pyrimidine and adenine in specificity and in regulation. One system transports pyrimidine and adenine nucleosides, but not guanine nucleosides. It is regulated by the cytR gene. The other system transports all nucleosides and is regulated by the cytR as well as by the deoR genes. Enzyme assays performed on whole cells of strains, able or unable to transport nucleosides, indicate that the nucleoside catabolizing enzymes are located inside the permeability barrier of the cell. 相似文献
3.
4.
5.
Sugar-proton transport systems of Escherichia coli 总被引:2,自引:0,他引:2
P J Henderson S Bradley A J Macpherson P Horne E O Davis K R Daruwalla M C Jones-Mortimer 《Biochemical Society transactions》1984,12(2):146-148
6.
7.
8.
Induction of an active transport system for glucose 6-phosphate in Escherichia coli 总被引:14,自引:0,他引:14
B M Pogell B R Maity S Frumkin S Shapiro 《Archives of biochemistry and biophysics》1966,116(1):406-415
9.
10.
Most Escherichia coli K12 strains survive for a relatively long time outside the laboratory. Under the same conditions the isoallelic E. coli K12 relA mutants die faster because they lack the stringent response. The killing rate is increased by using a plasmid-encoded suicide system consisting of the phage T7 lysozyme gene driven by the E. coli alkaline phosphatase gene promoter (phoA). Cells containing this system were rapidly and effectively killed as soon as phosphate was made limiting. The combination of the chromosomal relA mutation and a conditional suicide system of this type provides an effective means of biological containment for recombinant E. coli strains. 相似文献
11.
Mutants of Escherichia coli lacking all of the known saturable K+ transport systems, triple mutants, require elevated K+ concentrations for growth. K+ transport activity in such mutants, called TrkF activity, has low substrate specificity and a low rate that increases with increasing external pH. Attempts to isolate mutants requiring even higher concentrations of K+ failed, implying that either TrkF is essential or is composed of multiple minor K+ transport activities. Instead, we sought mutations that allowed triple mutants to grow at lower K+ concentrations. Mutations so identified include ones altering MscL, the large mechanosensitive channel, or Opp, the oligopeptide permease. However, a possible contribution of wild-type Opp and MscL to TrkF activity was not proven. In contrast, expression of wild-type ProP, TrkG, and TrkH proteins increased uptake when encoded on multicopy plasmids. In all of these situations, the driving force for K+ appeared to be the transmembrane electric potential, and in most cases substrate specificity was low; these are characteristics of TrkF activity. These results support the view that TrkF is composed of multiple, aberrant K+ transport activities, i.e., paths that, regardless of their physiological function, allow K+ to cross the cell membrane by a uniport process. 相似文献
12.
A K+ transport ATPase in Escherichia coli. 总被引:4,自引:0,他引:4
A K+ -stimulated ATPase in membranes of Escherichia coli has been identified as an activity of the Kdp system, and ATP-driven K+ transport system. Three characteristics support association of the ATPase with the Kdp system: (i) ATPase and Kdp transport are both repressed by growth in media containing high concentrations of K+; (ii) the ATPase and Kdp system accept only K+ as substrate, neither requires Na+ nor accepts Rb+ as a substrate; (iii) the affinity of the ATPase and that of th Kdp system for K+ is similar and is altered by mutations in the structural genes of the Kdp system. Discovery of an ATPase associated with a bacterial transport system suggests functional similarities with the ATP-driven transport systems of animal cells. 相似文献
13.
A hexose-phosphate transport system in Escherichia coli 总被引:22,自引:0,他引:22
H H Winkler 《Biochimica et biophysica acta》1966,117(1):231-240
14.
Ferrous iron transport mutants in Escherichia coli K12 总被引:2,自引:0,他引:2
Klaus Hantke 《FEMS microbiology letters》1987,44(1):53-57
A ferrous iron transport system in Escherichia coli is described. Mutants in this transport system were isolated using the antibiotic streptonigrin. The gene locus feo (for ferrous iron transport) was mapped near pncA at 38.5 min on the genetic map of E. coli K12. The transport of ferrous iron was regulated by fur as the siderophore transport systems. 相似文献
15.
The regulation and properties of the galactose transport system in Escherichia coli K12 总被引:9,自引:0,他引:9
D B Wilson 《The Journal of biological chemistry》1974,249(2):553-558
16.
A Munch-Petersen B Mygind A Nicolaisen N J Pihl 《The Journal of biological chemistry》1979,254(10):3730-3737
Osmotic shock treatment of cells of Escherichia coli K12 caused a reduction in the transport of nucleosides into the cells. The strains used carried mutations in the nucleoside catabolizing enzymes. This indicated that the decrease in transport capacity was not due to loss of these enzymes during the shock treatment. Membrane vesicles, prepared from the same strains, showed a limited transport of cytidine, deoxycytidine, and uridine. Transport of purine nucleosides and of thymidine was very low in vesicles lacking the appropriate nucleoside phosphorylases and no significant stimulation was observed if the nucleoside phosphorylases were present in the membrane vesicles. These results all indicate that components outside the cytoplasmic membrane are important for nucleoside transport. Selection for resistance to fluorodeoxycytidine yielded mutants which were unable to transport any nucleoside, even when the nucleoside phosphorylases were present in high amounts. This finding is consistent with a requirement for a specific transport process prior to the initial enzymatic attack on the incoming nucleoside. 相似文献
17.
Kinetics of K exchange in the steady state and of net K uptake after osmotic upshock are reported for the four K transport systems of Escherichia coli: Kdp, TrkA, TrkD, and TrkF. Energy requirements for K exchange are reported for the Kdp and TrkA systems. For each system, kinetics of these two modes of K transport differ from those for net K uptake by K-depleted cells (Rhoads, D. B. F.B. Walters, and W. Epstein. 1976. J. Gen. Physiol. 67:325-341). The TrkA and TrkD systems are inhibited by high intracellular K, the TrkF system is stimulated by intracellular K, whereas the Kdp system is inhibited by external K when intracellular K is high. All four systems mediate net K uptake in response to osmotic upshock. Exchange by the Kdp and TrkA systems requires ATP but is not dependent on the protonmotive force. Energy requirements for the Kdp system are thus identical whether measured as net K uptake or K exchange, whereas the TrkA system differs in that it is dependent on the protonmotive force only for net K uptake. We suggest that in both the Kpd and TrkA systems formation of a phosphorylated intermediate is necessary for all K transport, although exchange transport may not consume energy. The protonmotive-force dependence of the TrkA system is interpreted as a regulatory influence, limiting this system to exchange except when the protonmotive force is high. 相似文献
18.
Streptomycin uptake via an inducible polyamine transport system in Escherichia coli. 总被引:10,自引:0,他引:10
J V H?ltje 《European journal of biochemistry》1978,86(2):345-351
19.
The role of the K+ transport systems encoded by the kefB (formerly trkB) and kefC (formerly trkC) genes of Escherichia coli in K+ efflux has been investigated. The rate of efflux produced by N-ethylmaleimide (NEM), increased turgor pressure, alkalinization of the cytoplasm, or 2,4-dinitrophenol in a mutant with null mutations in both kef genes was compared with the rate of efflux in a wild-type strain for kef. The results show that these two genes encode the major paths for NEM-stimulated efflux. However, neither efflux system appears to be a significant path of K+ efflux produced by high turgor pressure, by alkalinization of the cytoplasm, or by addition of high concentrations of 2,4-dinitrophenol. Therefore, this species must have at least one other system, besides those encoded by kefB and kefC, capable of mediating a high rate of K+ efflux. The high, spontaneous rate of K+ efflux characteristic of the kefC121 mutation increases further when the strain is treated with NEM. Therefore, the mutational defect that leads to spontaneous efflux in this strain does not abolish the site(s) responsible for the action of NEM. 相似文献
20.
Transport systems for K+ in Escherichia coli are not detectable in membrane vesicles, but vesicles will take up K+ (and Rb+) in the presence of valinomycin. It is generally believed that valinomycin acts as a lipid-soluble cation carrier and that it does not interact with or activate cation transport systems. This view is challenged by Bhattacharyya et al. (Proc. Natl. Acad. Sci. USA 68:1448-1492, 1971), who reported reduced uptake in vesicles from E. coli mutants with K+ transport defects. We reexamined this question with some of the same mutants and were unable to confirm a correlation of valinomycin-induced vesicle transport with transport properties in intact cells. We found great variability in transport activity of vesicles from these E. coli K-12 strains and believe such variability as well as possible contamination with intact cells accounts for the earlier report. Our data do not support the idea that valinomycin-mediated transport in vesicles is related to physiological K+ transport systems. 相似文献