首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of the yeast Kluyveromyces marxianus to convert lactose into ethyl acetate offers good opportunities for the economical reuse of whey. The formation of ethyl acetate as a bulk product depends on aerobic conditions. Aeration of the bioreactor results in discharge of the volatile ester with the exhaust gas that allows its process‐integrated recovery. The influence of aeration (varied from 10 to 50 L/h) was investigated during batch cultivation of K. marxianus DSM 5422 in 0.6 L whey‐borne medium using a stirred reactor. With lower aeration rates, the ester accumulated in the bioreactor and reached higher concentrations in the culture medium and the off gas. A high ester concentration in the gas phase is considered beneficial for ester recovery from the gas, while a high ester concentration in the medium inhibited yeast growth and slowed down the process. To further investigate this effect, the inhibition of growth by ethyl acetate was studied in a sealed cultivation system. Here, increasing ester concentrations caused a nearly linear decrease of the growth rate with complete inhibition at concentrations greater than 17 g/L ethyl acetate. Both the cultivation process and the growth rate depending on ethyl acetate were described by mathematical models. The simulated processes agreed well with the measured data.  相似文献   

2.
3.
Kluyveromyces marxianus is capable of converting lactose into ethyl acetate offering a chance for an economical reuse of whey. The microbial formation of ethyl acetate as a bulk product calls for an aerobic process and, thus, the highly volatile ethyl acetate is discharged from the aerated bioreactor. This stripping process was modeled and investigated experimentally. The stripping rate was proportional to the gas flow and nearly independent of the stirring rate since the stripping was governed by the absorption capacity of the exhaust gas rather than the phase transfer. Cooling the exhaust gas did not noticeably influence the stripping. One batch experiment is presented in detail to demonstrate the formation of ethyl acetate by K. maxianus DSM 5422 on whey. Further batch experiments showed that a substantial formation of ethyl acetate only occurred when the yeast growth was limited by a lack of trace elements. The highest product yield observed was 0.25 g ethyl acetate per g lactose which is nearly 50% of the theoretical maximum.  相似文献   

4.
The ability of Kluyveromyces marxianus to convert lactose into ethyl acetate offers a chance for an economic reuse of whey. Former experiments with K. marxianus DSM 5422 proved limitation of growth by iron (Fe) or copper as a precondition for significant ester synthesis. Several aerobic batch and chemostat cultivations were done with whey-borne media of a variable Fe content for exploring the effect of Fe on growth, the Fe content of biomass, and metabolite synthesis. At low Fe doses, Fe was the growth-limiting factor, the available Fe was completely absorbed by the yeasts, and the biomass formation linearly depended on the Fe dose governed by a minimum Fe content in the yeasts, x Fe,min. At batch conditions, x Fe,min was 8.8???g/g, while during chemostat cultivation at D?=?0.15?h?1, it was 23???g/g. At high Fe doses, sugar was the growth-limiting factor, Fe was more or less absorbed, and the formed biomass became constant. Significant amounts of ethyl acetate were only formed at Fe limitation while high Fe doses suppressed ester formation. Analysis of formed metabolites such as glycerol, pyruvate, acetate, ethanol, ethyl acetate, isocitrate, 2-oxoglutarate, succinate, and malate during chemostat cultivation allowed some interpretation of the Fe-dependent mechanism of ester synthesis; formation of ethyl acetate from acetyl-SCoA and ethanol is obviously initiated by a diminished metabolic flux of acetyl-SCoA into the citrate cycle and by a limited oxidation of NADH in the respiratory chain since Fe is required for the function of aconitase, succinate dehydrogenase, and the electron-transferring proteins.  相似文献   

5.
6.
Kluyveromyces marxianus is able to transform lactose into ethyl acetate as a bulk product which offers a chance for an economical reuse of whey-borne sugar. Ethyl acetate is highly volatile and allows its process-integrated recovery by stripping from the aerated bioreactor. Extensive formation of ethyl acetate by K. marxianus DSM 5422 required restriction of yeast growth by a lack of trace elements. Several aerobic batch processes were done in a 1-L stirred reactor using whey-borne culture medium supplemented with an individual trace element solution excluding Mn, Mo, Fe, Cu, or Zn for identifying the trace element(s) crucial for the observed ester synthesis. Only a lack of Fe, Cu, or Zn restricted yeast growth while exclusion of Mn and Mo did not exhibit any effect due to a higher amount of the latter in the used whey. Limitation of growth by Fe or Cu caused significant production of ethyl acetate while limitation by Zn resulted in formation of ethanol. A lack of Fe or Cu obviously makes the respiratory chain inefficient resulting in an increased mitochondrial NADH level followed by a reduced metabolic flux of acetyl-SCoA into the citrate cycle. Synthesis of ethyl acetate from acetyl-SCoA and ethanol by alcoholysis is thus interpreted as an overflow metabolism.  相似文献   

7.
Abstract The enzymes implicated in ethyl acetate synthesis and the catabolism of ethanol by Kluyveromyces fragilis were investigated under varying growth conditions. The culture was grown continuously to D = 0.25 h−1 on diluted whey permeate. The results showed that ethyl acetate synthesis by Kluyveromyces fragilis is catalysed by both an esterase and an alcohol acetyltransferase. The esterase is a constitutive enzyme, while alcohol acetyltransferase is inducible. The catabolism of ethanol by Kluyveromyces fragilis resulted in production of ethyl acetate, acetate and acetaldehyde. The glyoxylic shunt is totally inactive in these conditions. The production of acetaldehyde is only governed by an alcohol dehydrogenase.  相似文献   

8.
The synthesis of ethyl acetate by Kluyveromyces fragilis on diluted whey permeate was studied. Ethanol, lactose and O2 are the direct precursors for ethyl acetate synthesis by this yeast. Ethyl acetate production is affected by many parameters, particularly the carbon/nitrogen (C/N) ratio, Tween 80 and iron. Ethyl acetate synthesis is optimum for C/N = 45. Tween 80 lowered slightly the level of ethyl acetate whereas iron completely stopped ethyl acetate production. The level of ethanol in the feed, the dissolved O2 (DO) and dilution rate (D) were also optimised. Thus at D = 0.24 h –1, for 4 g/l of ethanol in the feed and 40% DO, the productivity of ethyl acetate was optimal (0.7 g/l per hour). Correspondence to: A. Miclo  相似文献   

9.
The dairy yeast Kluyveromyces marxianus is a promising cell factory for producing bioethanol and heterologous proteins, as well as a robust synthetic biology platform host, due to its safe status and beneficial traits, including fast growth and thermotolerance. However, the lack of high-efficiency transformation methods hampers the fundamental research and industrial application of this yeast. Protoplast transformation is one of the most commonly used fungal transformation methods, but it yet remains unexplored in K. marxianus. Here, we established the protoplast transformation method of K. marxianus for the first time. A series of parameters on the transformation efficiency were optimized: cells were collected in the late-log phase and treated with zymolyase for protoplasting; the transformation was performed at 0 °C with carrier DNA, CaCl2, and PEG; after transformation, protoplasts were recovered in a solid regeneration medium containing 3–4% agar and 0.8 m sorbitol. By using the optimized method, plasmids of 10, 24, and 58 kb were successfully transformed into K. marxianus. The highest efficiency reached 1.8 × 104 transformants per μg DNA, which is 18-fold higher than the lithium acetate method. This protoplast transformation method will promote the genetic engineering of K. marxianus that requires high-efficiency transformation or the introduction of large DNA fragments.  相似文献   

10.
Summary The thermotolerant yeast strain, Kluyveromyces marxianus 1MB 3, was shown to be capable of limited growth on cellobiose containing media at 45°C. Growth, sugar utilization and ethanol production were shown to increase in the presence of exogenously added thermostable fungal -glucosidase. During active growth of the organism on cellobiose-containing media, -glucosidase activity was detected in cell lysate preparations with only minor amounts of activity present in the extracellular culture filtrate. The results suggest that limitations in ethanol production by this organism during growth on cellobiose containing media may be overcome by addition of exogenously added -glucosidase which results in increased substrate access to the biocatalytic unit.  相似文献   

11.
AIMS: To investigate the effect of total air pressure raise on cell growth and intracellular beta-galactosidase activity in batch cultures of Kluyveromyces marxianus CBS 7894. METHODS AND RESULTS: A pressurized bioreactor was used for K. marxianus batch cultivation under increased air pressure from 1.2 to 6 bar. Under these conditions no inhibition of cell growth was observed. Moreover, the improvement of the oxygen transfer rate (OTR) from the gas to the culture medium by pressurization led to an enhancement of the cell growth rate obtained at atmospheric pressure without aeration. The specific beta-galactosidase productivity increased from 5.8 to 17.0 U gCD-1 h-1 using a 6-bar air pressure instead of air at atmospheric pressure. The antioxidant enzyme superoxide dismutase (SOD) was slightly induced by the air pressure raise, which indicates that the defensive mechanisms of the cells can cope with an air pressure up to 6 bar. CONCLUSIONS: These experiments showed that the increase of air pressure up to 6 bar is an alternative to other methods of preventing the oxygen limitation and can be applied in the beta-galactosidase production by K. marxianus. SIGNIFICANCE AND IMPACT OF THE STUDY: The results here reported proved that, in what biological aspects are concerned, it is possible to use the air pressure increase as an optimization parameter of beta-galactosidase production in high-density cell cultures of K. marxianus strains.  相似文献   

12.
The effect of inulin sugars concentration on the growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 was studied. A maximum ethanol concentration of 102 g/liter was obtained from 250 g of sugars per liter initial concentration. The maximum specific growth rate varied from 0.44 h−1 at 50 g of sugar per liter to 0.13 h−1 at 300 g of sugar per liter, whereas the ethanol yield remained almost constant at 0.45 g of ethanol per g of sugars utilized.  相似文献   

13.
14.
马克斯克鲁维酵母作为非常规酵母在燃料乙醇发酵中受到人们越来越多的关注。马克斯克鲁维具有天然的发酵戊糖的能力,但不同菌株的发酵能力存在较大差异。本研究比较了3株马克斯克鲁维菌株Kluyveromyces marxianus 9009/1911/1727(K.m 9009/1911/1727)在不同温度下的木糖和阿拉伯糖的发酵性能差异,结果发现不同发酵温度下,3株菌在耗糖速率、糖醇产率均表现出了显著的差异。菌株K.m 9009和K.m 1727在40℃下的发酵性能均优于30℃,这充分体现了马克斯克鲁维酵母的高温发酵优势。针对发酵差异,采用PCR方法获得3个不同菌株的戊糖代谢途径中的5种关键代谢酶(XR、XDH、XK、AR和LAD)的基因序列,并利用Clustalx 2.1进行了序列比对。结果显示3株菌的相关基因与文献中报道的1株克鲁维酵母的相应关键酶氨基酸编码序列相似性达98%以上,并且差异的氨基酸不在酶的关键位点处。在此基础上,通过Real-time实验,对木糖发酵差异最为明显的K.m 1727和K.m 1911的木糖代谢过程4个关键酶(XR、XDH、XK和ADH)的基因表达量进行测定,其结果显示对于耐热菌株K.m 1727,XDH和XK基因表达量低是导致木糖代谢过程中木糖醇积累、乙醇产量低的主要原因。最后,将所测得的马克斯克鲁维酵母的戊糖代谢关键酶序列与其他不同种属相比对,确定了其木糖和阿拉伯糖代谢途径,为进一步利用代谢工程方法提高戊糖发酵性能奠定了基础。  相似文献   

15.
The yeast Kluyveromyces marxianus and its biotechnological potential   总被引:1,自引:0,他引:1  
Strains belonging to the yeast species Kluyveromyces marxianus have been isolated from a great variety of habitats, which results in a high metabolic diversity and a substantial degree of intraspecific polymorphism. As a consequence, several different biotechnological applications have been investigated with this yeast: production of enzymes (beta-galactosidase, beta-glucosidase, inulinase, and polygalacturonases, among others), of single-cell protein, of aroma compounds, and of ethanol (including high-temperature and simultaneous saccharification-fermentation processes); reduction of lactose content in food products; production of bioingredients from cheese-whey; bioremediation; as an anticholesterolemic agent; and as a host for heterologous protein production. Compared to its congener and model organism, Kluyveromyces lactis, the accumulated knowledge on K. marxianus is much smaller and spread over a number of different strains. Although there is no publicly available genome sequence for this species, 20% of the CBS 712 strain genome was randomly sequenced (Llorente et al. in FEBS Lett 487:71-75, 2000). In spite of these facts, K. marxianus can envisage a great biotechnological future because of some of its qualities, such as a broad substrate spectrum, thermotolerance, high growth rates, and less tendency to ferment when exposed to sugar excess, when compared to K. lactis. To increase our knowledge on the biology of this species and to enable the potential applications to be converted into industrial practice, a more systematic approach, including the careful choice of (a) reference strain(s) by the scientific community, would certainly be of great value.  相似文献   

16.
The lactic yeast Kluyveromyces marxianus var.marxianus (formerly K. fragilis) autolyzates at faster rate than Saccharomyces cerevisiae. During K. marxianus autolysis, quite similar release kinetics were observed for intracellular space markers (potassium ions, nucleotides), cell-wall components (polysaccharides, N-acetyl-D-Glucosamine) and non specific products (amino nitrogen). By Scanning Electronic Microscopy examination, no cell burst was observed, but a variation in cell shape (from ellipsoidal to cylindrical), as well as a 43% decrease in the internal volume were observed. The mechanism proposed for S. cerevisiae autolysis appeared also likely for K. marxianus.Abbreviations NacGlc N-acetyl-D-glucosamine - x total biomass (dry cellular weight) concentration  相似文献   

17.
Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z‐factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.  相似文献   

18.
Applied Microbiology and Biotechnology - 2-Phenylethanol (2-PE) and 2-phenethyl acetate (2-PEA) are important aroma compounds widely used in food and cosmetic industries due to their rose-like...  相似文献   

19.
Diacetyl reductase from Kluyveromyces marxianus NRRL Y-1196 was purified 27.5-fold with a yield of 13% by ammonium sulphate fractionation, DEAE-anion exchange chromatography, hydroxyapatite chromatography and chromatofocusing. The purified enzyme was most active at pH 7.0 and exhibited optimal activity at 40°C. The K m and V max values for diacetyl were 2.5 mmol 1-1 and 0.026 mmol 1-1 min-1, respectively. The enzyme did not react with monoaldehydes or monoketones, but reduced acetoin, diacetyl and methylglyoxal with NADH as a cofactor. The enzyme had an isoelectric point (pl) of pH 5.8, and its molecular weight was 50 kDa.  相似文献   

20.
Qian J  Qin X  Yin Q  Chu J  Wang Y 《Biotechnology letters》2011,33(3):571-575
The mitogen-activated protein kinase Hog1 gene (Kmhog1) was isolated from Kluyveromyces marxianus strain NBRC 1777 by degenerate PCR and genome walking, and then disrupted to construct a mutant strain hog1?. The mutant was now more sensitive to acetic acid and its growth was nearly completely inhibited by 0.5 M NaCl (97%) and 10 mM H(2)O(2) (93%) as compared with the wild-type cells. However, neither strain grew at 47°C. Kmhog1 may thus be required for adaptation to acetic acid, osmotic, and oxidative stress but is not involved in thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号