首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
SARS-CoV 3C-like protease (3CL(pro)) is an attractive target for anti-severe acute respiratory syndrome (SARS) drug discovery, and its dimerization has been extensively proved to be indispensable for enzymatic activity. However, the reason why the dissociated monomer is inactive still remains unclear due to the absence of the monomer structure. In this study, we showed that mutation of the dimer-interface residue Gly-11 to alanine entirely abolished the activity of SARS-CoV 3CL(pro). Subsequently, we determined the crystal structure of this mutant and discovered a complete crystallographic dimer dissociation of SARS-CoV 3CL(pro). The mutation might shorten the alpha-helix A' of domain I and cause a mis-oriented N-terminal finger that could not correctly squeeze into the pocket of another monomer during dimerization, thus destabilizing the dimer structure. Several structural features essential for catalysis and substrate recognition are severely impaired in the G11A monomer. Moreover, domain III rotates dramatically against the chymotrypsin fold compared with the dimer, from which we proposed a putative dimerization model for SARS-CoV 3CL(pro). As the first reported monomer structure for SARS-CoV 3CL(pro), the crystal structure of G11A mutant might provide insight into the dimerization mechanism of the protease and supply direct structural evidence for the incompetence of the dissociated monomer.  相似文献   

2.
Severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CL(pro)) mediates extensive proteolytic processing of replicase polyproteins, and is considered a promising target for anti-SARS drug development. Here we present a rapid and high-throughput screening method to study the substrate specificity of SARS-CoV 3CL(pro). Six target amino acid positions flanking the SARS-CoV 3CL(pro) cleavage site were investigated. Each batch of mixed peptide substrates with defined amino acid substitutions at the target amino acid position was synthesized via the "cartridge replacement" approach and was subjected to enzymatic cleavage by recombinant SARS-CoV 3CL(pro). Susceptibility of each peptide substrate to SARS-CoV 3CL(pro) cleavage was monitored simultaneously by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The hydrophobic pocket in the P2 position at the protease cleavage site is crucial to SARS-CoV 3CL(pro)-specific binding, which is limited to substitution by hydrophobic residue. The binding interface of SARS-CoV 3CL(pro) that is facing the P1' position is suggested to be occupied by acidic amino acids, thus the P1' position is intolerant to acidic residue substitution, owing to electrostatic repulsion. Steric hindrance caused by some bulky or beta-branching amino acids in P3 and P2' positions may also hinder the binding of SARS-CoV 3CL(pro). This study generates a comprehensive overview of SARS-CoV 3CL(pro) substrate specificity, which serves as the design basis of synthetic peptide-based SARS-CoV 3CL(pro) inhibitors. Our experimental approach is believed to be widely applicable for investigating the substrate specificity of other proteases in a rapid and high-throughput manner that is compatible for future automated analysis.  相似文献   

3.
3C-like protease (3CL pro) plays pivotal roles in the life cycle of severe acute respiratory syndrome coronavirus (SARS-CoV) and only the dimeric protease is proposed as the functional form. Guided by the crystal structure and molecular dynamics simulations, we performed systematic mutation analyses to identify residues critical for 3CL pro dimerization and activity in this study. Seven residues on the dimer interface were selected for evaluating their contributions to dimer stability and catalytic activity by biophysical and biochemical methods. These residues are involved in dimerization through hydrogen bonding and broadly located in the N-terminal finger, the alpha-helix A' of domain I, and the oxyanion loop near the S1 substrate-binding subsite in domain II. We revealed that all seven single mutated proteases still have the dimeric species but the monomer-dimer equilibria of these mutants vary from each other, implying that these residues might contribute differently to the dimer stability. Such a conclusion could be further verified by the results that the proteolytic activities of these mutants also decrease to varying degrees. The present study would help us better understand the dimerization-activity relationship of SARS-CoV 3CL pro and afford potential information for designing anti-viral compounds targeting the dimer interface of the protease.  相似文献   

4.
An integrated system has been developed for discovering potent inhibitors of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CL(pro)) by virtual screening correlating with surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) technologies-based assays. The authors screened 81,287 small molecular compounds against SPECS database by virtual screening; 256 compounds were subsequently selected for biological evaluation. Through SPR technology-based assay, 52 from these 256 compounds were discovered to show binding to SARS-CoV 3CL(pro). The enzymatic inhibition activities of these 52 SARS-CoV 3CL(pro) binders were further applied to FRET-based assay, and IC(50) values were determined. Based on this integrated assay platform, 8 new SARS-CoV 3CL(pro) inhibitors were discovered. The fact that the obtained IC(50) values for the inhibitors are in good accordance with the discovered dissociation equilibrium constants (K(D)s) assayed by SPR implied the reliability of this platform. Our current work is hoped to supply a powerful approach in the discovery of potent SARS-CoV 3CL(pro) inhibitors, and the determined inhibitors could be used as possible lead compounds for further research.  相似文献   

5.
The main protease (Mpro) plays a vital role in proteolytic processing of the polyproteins in the replicative cycle of SARS coronavirus (SARS-CoV). Dimerization of this enzyme has been shown to be indispensable for trans-cleavage activity. However, the auto-processing mechanism of Mpro, i.e. its own release from the polyproteins through autocleavage, remains unclear. This study elucidates the relationship between the N-terminal autocleavage activity and the dimerization of “immature” Mpro. Three residues (Arg4, Glu290, and Arg298), which contribute to the active dimer conformation of mature Mpro, are selected for mutational analyses. Surprisingly, all three mutants still perform N-terminal autocleavage, while the dimerization of mature protease and trans-cleavage activity following auto-processing are completely inhibited by the E290R and R298E mutations and partially so by the R4E mutation. Furthermore, the mature E290R mutant can resume N-terminal autocleavage activity when mixed with the “immature” C145A/E290R double mutant whereas its trans-cleavage activity remains absent. Therefore, the N-terminal auto-processing of Mpro appears to require only two “immature” monomers approaching one another to form an “intermediate” dimer structure and does not strictly depend on the active dimer conformation existing in mature protease. In conclusion, an auto-release model of Mpro from the polyproteins is proposed, which will help understand the auto-processing mechanism and the difference between the autocleavage and trans-cleavage proteolytic activities of SARS-CoV Mpro.  相似文献   

6.
As part of our search for botanical sources of SARS-CoV 3CL(pro) inhibitors, we selected Torreya nucifera, which is traditionally used as a medicinal plant in Asia. The ethanol extract of T. nucifera leaves exhibited good SARS-CoV 3CL(pro) inhibitory activity (62% at 100μg/mL). Following bioactivity-guided fractionation, eight diterpenoids (1-8) and four biflavonoids (9-12) were isolated and evaluated for SARS-CoV 3CL(pro) inhibition using fluorescence resonance energy transfer analysis. Of these compounds, the biflavone amentoflavone (9) (IC(50)=8.3μM) showed most potent 3CL(pro) inhibitory effect. Three additional authentic flavones (apigenin, luteolin and quercetin) were tested to establish the basic structure-activity relationship of biflavones. Apigenin, luteolin, and quercetin inhibited 3CL(pro) activity with IC(50) values of 280.8, 20.2, and 23.8μM, respectively. Values of binding energy obtained in a molecular docking study supported the results of enzymatic assays. More potent activity appeared to be associated with the presence of an apigenin moiety at position C-3' of flavones, as biflavone had an effect on 3CL(pro) inhibitory activity.  相似文献   

7.
The severe acute respiratory syndrome (SARS) 3C-like protease consists of two distinct folds, namely the N-terminal chymotrypsin fold containing the domains I and II hosting the complete catalytic machinery and the C-terminal extra helical domain III unique for the coronavirus 3CL proteases. Previously the functional role of this extra domain has been completely unknown, and it was believed that the coronavirus 3CL proteases share the same enzymatic mechanism with picornavirus 3C proteases, which contain the chymotrypsin fold but have no extra domain. To understand the functional role of the extra domain and to characterize the enzyme-substrate interactions by use of the dynamic light scattering, circular dichroism, and NMR spectroscopy, we 1) dissected the full-length SARS 3CL protease into two distinct folds and subsequently investigated their structural and dimerization properties and 2) studied the structural and binding interactions of three substrate peptides with the entire enzyme and its two dissected folds. The results lead to several findings; 1) although two dissected parts folded into the native-like structures, the chymotrypsin fold only had weak activity as compared with the entire enzyme, and 2) although the chymotrypsin fold remained a monomer within a wide range of protein concentrations, the extra domain existed as a stable dimer even at a very low concentration. This observation strongly indicates that the extra domain contributes to the dimerization of the SARS 3CL protease, thus, switching the enzyme from the inactive form (monomer) to the active form (dimer). This discovery not only separates the coronavirus 3CL protease from the picornavirus 3C protease in terms of the enzymatic mechanism but also defines the dimerization interface on the extra helical domain as a new target for design of the specific protease inhibitors. Furthermore, the determination of the preferred solution conformation of the substrate peptide S1 together with the NMR differential line-broadening and transferred nuclear Overhauser enhancement study allows us to pinpoint the bound structure of the S1 peptide.  相似文献   

8.
Lin CW  Tsai FJ  Wan L  Lai CC  Lin KH  Hsieh TH  Shiu SY  Li JY 《FEBS letters》2005,579(27):6089-6094
The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is an important issue for treatment and prevention of SARS. Recently, SARS-CoV 3CL(pro) protease has been implied to be possible relevance to SARS-CoV pathogenesis. In this study, we intended to identify potential 3CL(pro)-interacting cellular protein(s) using the phage-displayed human lung cDNA library. The vacuolar-H+ ATPase (V-ATPase) G1 subunit that contained a 3CL(pro) cleavage site-like motif was identified as a 3CL(pro)-interacting protein, as confirmed using the co-immunoprecipitation assay and the relative affinity assay. In addition, our result also demonstrated the cleavage of the V-ATPase G1 fusion protein and the immunoprecipitation of cellular V-ATPase G1 by the 3CL(pro). Moreover, loading cells with SNARF-1 pH-sensitive dye showed that the intracellular pH in 3CL(pro)-expressing cells was significantly lower as compared to mock cells.  相似文献   

9.
The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is vital for SARS-CoV replication and is a promising drug target. Recombinant 3CL(pro) was expressed in Pichia pastoris GS115 as a 42?kDa protein that displayed a K ( m ) of 15?±?2?μM with Dabcyl-KTSAVLQSGFRKME-Edans as substrate. Purified 3CL(pro) was used for inhibition and kinetic assays with seven flavonoid compounds. The IC(50) of six flavonoid compounds were 47-381?μM. Quercetin, epigallocatechin gallate and gallocatechin gallate (GCG) displayed good inhibition toward 3CL(pro) with IC(50) values of 73, 73 and 47?μM, respectively. GCG showed a competitive inhibition pattern with K ( i ) value of 25?±?1.7?μM. In molecular docking experiments, GCG displayed a binding energy of -14?kcal?mol(-1) to the active site of 3CL(pro) and the galloyl moiety at 3-OH position was required for 3CL(pro) inhibition activity.  相似文献   

10.
11.
SARS (severe acute respiratory syndrome) is caused by a newly discovered coronavirus. A key enzyme for the maturation of this virus and, therefore, a target for drug development is the main protease 3CL(pro) (also termed SARS-CoV 3CL(pro)). We have cloned and expressed in Escherichia coli the full-length SARS-CoV 3CL(pro) as well as a truncated form containing only the catalytic domains. The recombinant proteins have been characterized enzymatically using a fluorescently labeled substrate; their structural stability in solution has been determined by differential scanning calorimetry, and novel inhibitors have been discovered. Expression of the catalytic region alone yields a protein with a reduced catalytic efficiency consistent with the proposed regulatory role of the alpha-helical domain. Differential scanning calorimetry indicates that the alpha-helical domain does not contribute to the structural stability of the catalytic domains. Analysis of the active site cavity reveals the presence of subsites that can be targeted with specific chemical functionalities. In particular, a cluster of serine residues (Ser139, Ser144, and Ser147) was identified near the active site cavity and was susceptible to being targeted by compounds containing boronic acid. This cluster is highly conserved in similar proteases from other coronaviruses, defining an attractive target for drug development. It was found that bifunctional aryl boronic acid compounds were particularly effective at inhibiting the protease, with inhibition constants as strong as 40 nM. Isothermal titration microcalorimetric experiments indicate that these inhibitors bind reversibly to 3CL(pro) in an enthalpically favorable fashion, implying that they establish strong interactions with the protease molecule, thus defining attractive molecular scaffolds for further optimization.  相似文献   

12.
The 3C-like protease (3CLpro) of severe acute respiratory syndrome (SARS) has been proposed as an attractive target for drug design. His41 and Cys145 were essential for the active site as the principal catalytic residues. In this study, we mutated the two sites, expressed four resulting mutants in Escherichia coli and characterized. All mutants showed undetectable activity in trans-cleavage assay. In addition, we introduced a 31-mer peptide containing an auto-cleavage site to the N-terminal of the proteases and found the peptide could be cleaved efficiently by 3CLsc itself, but, among the four mutants, only the mutant Cys145-->Ser showed residual activity as detected by the auto-cleavage assay. The data supported the proposition unequivocally that SARS-CoV 3CLpro was a member of serine proteases involving His41 and Cys145 residues at the active site. The auto-cleavage assay also provided a sensitive and reliable compensation to the traditional trans-cleavage assay.  相似文献   

13.
The main protease (Mpro) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. SARS-CoV Mpro is composed of a catalytic N-terminal domain and an α-helical C-terminal domain linked by a long loop. Even though the N-terminal domain of SARS-CoV Mpro adopts a similar chymotrypsin-like fold as that of piconavirus 3C protease, the extra C-terminal domain is required for SARS-CoV Mpro to be enzymatically active. Here, we reported the NMR assignments of the SARS-CoV Mpro N-terminal domain alone, which are essential for its solution structure determination.  相似文献   

14.
Liang Y  Yao J  Gillam S 《Journal of virology》2000,74(12):5412-5423
Rubella virus (RV) genomic RNA contains two large open reading frames (ORFs): a 5'-proximal ORF encoding nonstructural proteins (NSPs) that function primarily in viral RNA replication and a 3'-proximal ORF encoding the viral structural proteins. Proteolytic processing of the RV NSP ORF translation product p200 is essential for viral replication. Processing of p200 to two mature products (p150 and p90) in the order NH(2)-p150-p90-COOH is carried out by an RV-encoded protease residing in the C-terminal region of p150. The RV nonstructural protease (NS-pro) belongs to a viral papain-like protease family that cleaves the polyprotein both in trans and in cis. A conserved X domain of unknown function was found from previous sequence analysis to be associated with NS-pro. To define the domains responsible for cis- and trans-cleavage activities and the function of the X domain in terms of protease activity, an in vitro translation system was employed. We demonstrated that the NSP region from residue 920 to 1296 is necessary for trans-cleavage activity. The domain from residue 920 to 1020 is not required for cis-cleavage activity. The X domain located between residues 834 and 940, outside the regions responsible for both cis- and trans-cleavage activities of NS-pro, was found to be important for NS-pro trans-cleavage activity but not for cis-cleavage activity. Analysis of sequence homology and secondary structure of the RV NS-pro catalytic region reveals a folding structure similar to that of papain.  相似文献   

15.
Gill-associated virus (GAV), a positive-stranded RNA virus of prawns, is the prototype of newly recognized taxa (genus Okavirus, family Roniviridae) within the order NIDOVIRALES: In this study, a putative GAV cysteine proteinase (3C-like proteinase [3CL(pro)]), which is predicted to be the key enzyme involved in processing of the GAV replicase polyprotein precursors, pp1a and pp1ab, was characterized. Comparative sequence analysis indicated that, like its coronavirus homologs, 3CL(pro) has a three-domain organization and is flanked by hydrophobic domains. The putative 3CL(pro) domain including flanking regions (pp1a residues 2793 to 3143) was fused to the Escherichia coli maltose-binding protein (MBP) and, when expressed in E. coli, was found to possess N-terminal autoprocessing activity that was not dependent on the presence of the 3CL(pro) C-terminal domain. N-terminal sequence analysis of the processed protein revealed that cleavage occurred at the location (2827)LVTHE downward arrow VRTGN(2836). The trans-processing activity of the purified recombinant 3CL(pro) (pp1a residues 2832 to 3126) was used to identify another cleavage site, (6441)KVNHE downward arrow LYHVA(6450), in the C-terminal pp1ab region. Taken together, the data tentatively identify VxHE downward arrow (L,V) as the substrate consensus sequence for the GAV 3CL(pro). The study revealed that the GAV and potyvirus 3CL(pro)s possess similar substrate specificities which correlate with structural similarities in their respective substrate-binding sites, identified in sequence comparisons. Analysis of the proteolytic activities of MBP-3CL(pro) fusion proteins carrying replacements of putative active-site residues provided evidence that, in contrast to most other 3C/3CL(pro)s but in common with coronavirus 3CL(pro)s, the GAV 3CL(pro) employs a Cys(2968)-His(2879) catalytic dyad. The properties of the GAV 3CL(pro) define a novel RNA virus proteinase variant that bridges the gap between the distantly related chymotrypsin-like cysteine proteinases of coronaviruses and potyviruses.  相似文献   

16.
17.
The hepatitis C virus (HCV) nonstructural 3 protein (NS3) contains at least two domains associated with multiple enzymatic activities; a serine protease activity resides in the N-terminal one-third of the protein, whereas RNA helicase activity and RNA-stimulated nucleoside triphosphatase activity are associated with the C-terminal portion. To study the possible mutual influence of these enzymatic activities, a full-length NS3 polypeptide of 67 kDa was expressed as a nonfusion protein in Escherichia coli, purified to homogeneity, and shown to retain all three enzymatic activities. The protease activity of the full-length NS3 was strongly dependent on the activation by a synthetic peptide spanning the central hydrophobic core of the NS4A cofactor. Once complexed with the NS4A-derived peptide, the full-length NS3 protein and the isolated N-terminal protease domain cleaved synthetic peptide substrates with comparable efficiency. We show that, as in the case of the isolated protease domain, the protease activity of full-length NS3 undergoes inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A-NS4B and NS5A-NS5B. We have also characterized and quantified the NS3 ATPase, RNA helicase, and RNA-binding activities under optimized reaction conditions. Compared with the isolated N-terminal and C-terminal domains, recombinant full-length NS3 did not show significant differences in the three enzymatic activities analyzed in independent in vitro assays. We have further explored the possible interdependence of the NS3 N-terminal and C-terminal domains by analyzing the effect of polynucleotides on the modulation of all NS3 enzymatic functions. Our results demonstrated that the observed inhibition of the NS3 proteolytic activity by single-stranded RNA is mediated by direct interaction with the protease domain rather than with the helicase RNA-binding domain.  相似文献   

18.
The severe acute respiratory syndrome (SARS) coronavirus (CoV) main protease represents an attractive target for the development of novel anti-SARS agents. The tertiary structure of the protease consists of two distinct folds. One is the N-terminal chymotrypsin-like fold that consists of two structural domains and constitutes the catalytic machinery; the other is the C-terminal helical domain, which has an unclear function and is not found in other RNA virus main proteases. To understand the functional roles of the two structural parts of the SARS-CoV main protease, we generated the full-length of this enzyme as well as several terminally truncated forms, different from each other only by the number of amino acid residues at the C- or N-terminal regions. The quaternary structure and K(d) value of the protease were analyzed by analytical ultracentrifugation. The results showed that the N-terminal 1-3 amino acid-truncated protease maintains 76% of enzyme activity and that the major form is a dimer, as in the wild type. However, the amino acids 1-4-truncated protease showed the major form to be a monomer and had little enzyme activity. As a result, the fourth amino acid seemed to have a powerful effect on the quaternary structure and activity of this protease. The last C-terminal helically truncated protease also exhibited a greater tendency to form monomer and showed little activity. We concluded that both the C- and the N-terminal regions influence the dimerization and enzyme activity of the SARS-CoV main protease.  相似文献   

19.
Lin CW  Tsai CH  Tsai FJ  Chen PJ  Lai CC  Wan L  Chiu HH  Lin KH 《FEBS letters》2004,574(1-3):131-137
Severe acute respiratory syndrome (SARS) has been globally reported. A novel coronavirus (CoV), SARS-CoV, was identified as the etiological agent of the disease. SARS-CoV 3C-like protease (3CLpro) mediates the proteolytic processing of replicase polypeptides 1a and 1ab into functional proteins, playing an important role in viral replication. In this study, we demonstrated the expression of the SARS-CoV 3CLpro in Escherichia coli and Vero cells, and then characterized the in vitro trans-cleavage and the cell-based cis-cleavage by the 3CLpro. Mutational analysis of the 3CLpro demonstrated the importance of His41, Cys145, and Glu166 in the substrate-binding subsite S1 for keeping the proteolytic activity. In addition, alanine substitution of the cleavage substrates indicated that Gln-(P1) in the substrates mainly determined the cleavage efficiency. Therefore, this study not only established the quantifiable and reliable assay for the in vitro and cell-based measurement of the 3CLpro activity, but also characterized the molecular interaction of the SARS-CoV 3CLpro with the substrates. The results will be useful for the rational development of the anti-SARS drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号