首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Boron (B) is an essential microelement for the growth and development of plants. B-deficient radish plants grew slowly compared to B-sufficient controls. Soluble B and cell wall-bound B decreased in young leaves on removal of B from culture medium. In old leaves, B deficiency reduced soluble B content but there was no significant effect on cell wall-bound B content compared to controls. The mesophyll cells in the middle of leaves were enlarged abnormally and had greater cell wall thickness under B-deficient conditions. B deficiency reduced the stomata frequency, inhibited the stomata aperture, and guard cells had thickened cell walls. B-starved leaves showed decreased photosynthesis and stomatal conductance. These indicate that B deficiency could interfere with cell wall development, especially irregular guard cell walls as a result of B deficiency severely affected the rhythmic stomatal closing and opening, preventing the normal functioning of stomata. Correspondingly, photosynthesis was indirectly affected, and plant growth decreased.  相似文献   

2.
Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.  相似文献   

3.
Processes of oocyte maturation that may be affected by boron (B) deficiency were studied to potentially determine a possible biochemical role of B in the Xenopus laevis oocyte. More specifically, the Xenopus oocyte membrane progesterone receptor (OMPR) in B-deficient oocytes was characterized by evaluating progesterone affinity for the OMPR and OMPR responsiveness to progesterone stimulation. The responsiveness of B-deficient oocytes to microinjection of a purified oocyte cytoplasmic fraction (OCF) from B-adequate oocytes was also studied to evaluate which aspects of the maturation process were affected by B deficiency. Results suggested that B deficiency resulted in incomplete oocyte maturation and that maturation could not be induced by the administration of exogenous progesterone. Progesterone successfully induced germinal vesicle breakdown (GVBD) in oocytes from females fed a B-supplemented diet (+B) and females administered a traditional diet of beef liver and lung (B adequate). Addition of exogenous B to the -B oocytes increased the rate of progesterone-induced GVBD slightly. The B-deficient X. laevis oocytes were capable of undergoing GVBD when endogenously stimulated by microinjected purified B-adequate OCF. These results indicated that the inability of the B-deficient oocytes to undergo GVBD was not associated with the cytoplasmic induction process specifically, but possibly in the progesterone receptor or signal transduction pathways. Radio-binding studies found that progesterone binding to the B-deficient OPMR was greatly reduced compared to B-adequate or B-supplemented OMPR. Moreover, washout studies determined that progesterone binding to the OMPR in B-deficient oocytes was more transient than the B adequate or +B oocytes.  相似文献   

4.
Boron deficiency-induced impairments of cellular functions in plants   总被引:20,自引:1,他引:19  
Cakmak  Ismail  Römheld  Volker 《Plant and Soil》1997,193(1-2):71-83
The essentiality of B for growth and development of plants is well-known, but the primary functions of B still remain unknown. Evidence in the literature supports the idea that the major functions of B in growth and development of plants are based on its ability to form complexes with the compounds having cis-diol configurations. In this regard, the formation of B complexes with the constituents of cell walls and plasma membranes as well as with the phenolic compounds seems to be a decisive step affecting the physiological functions of B. Boron seems to be of crucial importance for the maintenance of structural integrity of plasma membranes. This function of B is mainly related to stabilisation of cell membranes by B association with membrane constituents. Possibly, B may also protect plasma membranes against peroxidative damage by toxic O2 species. In B-deficient plants, plasma membranes are highly leaky and lose their functional integrity. Under B-deficient conditions, substantial changes in ion fluxes and proton pumping activity of the plasma membranes were noted. Impairments in phenol metabolism and increases in levels of phenolics and polyphenoloxidase activity are typical indications of B deficiency, particularly in B deficiency-sensitive plant species, such as Helianthus annuus (sunflower). Enhanced oxidation of phenols is responsible for generation of reactive quinones which subsequently produce extremely toxic O2 species, thus resulting in the increased risk of a peroxidative damage to vital cell components such as membrane lipids and proteins. In B-deficient tissues, enhancement in levels of toxic O2 species may also occur as a result of impairments in photosynthesis and antioxidative defence systems. Recent evidence shows that the levels of ascorbic acid, non-protein SH-compounds (mainly glutathione) and glutathione reductase, the major defence systems of cells against toxic O2 species, are reduced in response to B deficiency. There is also increasing evidence that, in the heterocyst cells of cyanobacteria, B is involved in protection of nitrogenase activity against O2 damage.  相似文献   

5.
The effects of boron (B) deficiency on carbohydrate concentrations and the pattern of phenolic compounds were studied in leaves of tobacco plants (Nicotiana tabacum L.). Plants grown under B deficiency showed a notable increase in leaf carbohydrates and total phenolic compounds when compared to controls. The qualitative composition of phenolics was analyzed by HPLC-mass spectrometry. The level of caffeate conjugates (i.e., chlorogenic acid) increased in B-deficient plants. In addition, the accumulation of two caffeic acid amides (N-caffeoylputrescine and putative dicaffeoylspermidine) was observed.  相似文献   

6.
Boron (B) deficiency results in inhibition of pumpkin (Cucurbia moschata Duchesne) growth that is accompanied by swelling of the cell walls. Monomeric rhamnogalacturonan II (mRG-II) accounted for 80% to 90% of the total RG-II in B-deficient walls, whereas the borate ester cross-linked RG-II dimer (dRG-II-B) accounted for more than 80% of the RG-II in control plants. The results of glycosyl residue and glycosyl linkage composition analyses of the RG-II from control and B-deficient plants were similar. Thus, B deficiency does not alter the primary structure of RG-II. The addition of (10)B-enriched boric acid to B-deficient plants resulted within 5 h in the conversion of mRG-II to dRG-II-(10)B. The wall thickness of the (10)B-treated plants and control plants was similar. The formation and possible functions of a borate ester cross-linked RG-II in the cell walls are discussed.  相似文献   

7.

Aims

The cell wall is the main binding site of boron (B) in plants, and the differences in B requirements among different plant species are determined by pectic polysaccharide contents in the cell walls. The aim of this research was to illustrate the relationship between cell wall properties and allocation of B to cell wall and the differential sensitivity of Brassica napus cultivars to B deficiency.

Methods

Two cultivars with opposite B efficiency were used to analyse the relationship among cell wall pectin contents and glycosyl composition, B uptake and allocation, gene expression and cell wall ultrastructure.

Results

The Brassica napus B-efficient cultivar Qingyou 10 was more tolerant to B deficiency, exhibiting a higher biomass production, milder B deficiency symptoms and less cell wall thickening compared to the Brassica napus B-inefficient cultivar Westar 10. These differences were attributed to two factors; the first was that Qingyou 10 accumulated more B and distributed significantly higher proportion of it to the cell wall pectins than did Westar 10 under low B supply. Also, the cell walls of Qingyou 10 exhibited relatively less B-binding sites than those of Westar 10, which was indicated by the lower cell wall extraction rates, less pectin and glycosyl residue contents under the B-deficient and B-sufficient conditions. A comparison of the KDOPS gene expression levels in the two conditions suggests that Westar 10 had a higher potential for biosynthesizing B-binding substances than did Qingyou 10, regardless of B levels.

Conclusions

These results suggest that both higher cell wall pectin polysaccharide content, and limited accumulation and allocation of B to the cell walls contribute to the greater sensitivity of Westar 10 to B deficiency. These two physiological aspects may determine the differences in B deficiency tolerance between Brassica napus cultivars Qingyou 10 and Westar 10. Comparably, the difference in accumulation and allocation of B to cell wall plays a much more important role than cell wall components to sensitivity difference of Brassica napus cultivars to B deficiency.  相似文献   

8.
  • Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated.
  • Apple pollen grains were cultured under different concentrations of B. Scanning ion‐selective electrode technique, fluorescence labelling and Fourier‐transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+]cyt), actin filaments and cell wall components of pollen tubes.
  • B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring‐like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls.
  • B appears to have an active role in pollen tube growth by affecting [Ca2+]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
  相似文献   

9.
Boron uptake by sunflower, squash and cultured tobacco cells   总被引:5,自引:0,他引:5  
Boron uptake was studied in sunflower ( Helianthus annuus cv. Ha301), squash ( Cucurbita pepo cv. Early prolific straight neck) and cultured tobacco ( Nicotiana tobacum L. cv. TXD Monsanto cell line) cells with the use of stable B isotopes and inductively coupled plasma mass spectrometry. Boron uptake increased linearly with increasing B concentrations in the uptake medium, did not exhibit multiphasic kinetics and was not saturable over a wide concentration range. The addition of respiratory inhibitors to the uptake solution or exposure to low (2°C) or high (42°C) temperatures did not inhibit B uptake. The majority of the B within the plants, including recently absorbed B, was present in a nonexchangeable form and could not be removed by repeated rinsing with deionized water or exchange with B isotope. These results demonstrate that in these species B uptake is a passive, nonmetabolic process and that the formation of nonexchangeable B-complexes within the cytoplasm and cell wall is a key factor in determining the uptake of B by plants.  相似文献   

10.
The interaction of boron (B) and aluminium (Al) was investigated in 5-day-old seedlings of soybean cv. Maple Arrow. Al treatment inhibited root elongation and callose formation in root tips particularly after 4-h Al treatment. After 10 and 24 h, both parameters indicated increasing recovery from Al stress. B deficiency aggravated Al toxicity compared with B sufficiency. B deficiency did lead to an increase in unmethylated pectin in the first 3 mm of the root tip. This increase in potential binding sites is reflected in generally higher Al contents in root tips of B-deficient plants. A fractionated extraction of Al from the root tips showed that citrate-exchangeable and non-exchangeable Al steeply increased up to 4 h, but then decreased after 10- and 24-h Al treatment faster in B-sufficient than in B-deficient plants. This decrease of Al contents can be explained by an Al-enhanced release of citrate from the root tips after 10-h Al treatment. However, the citrate exudation rate was the same (after 10 h) or even lower (after 24 h) in B-sufficient plants and thus cannot explain the faster decrease in Al contents of the root tips compared with the B-deficient plants. We, therefore, propose that under B deficiency, Al is more strongly bound by the pectic network of the cell wall of the root tips, which delays or prevents the recovery from initial Al stress through exudation of citrate, and thus explains the greater Al sensitivity of B-deficient common bean roots.  相似文献   

11.
12.
Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1’s involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.  相似文献   

13.
Physiological response of plants to low boron   总被引:30,自引:2,他引:30  
Dell  Bernie  Huang  Longbin 《Plant and Soil》1997,193(1-2):103-120
This review focuses on physiological responses in higher plants to B deficiency at the whole plant and organ level. Plants respond to decreasing B supply in soil solutions by slowing down or ceasing growth. Boron deficiency inhibits root elongation through limiting cell enlargement and cell division in the growing zone of root tips. In the case of severe B deficiency, the root cap, quiescent centre and protoderm of root tips disappear and root growth ceases, leading to the death of root tips. Although vascular bundles are weakly developed in B-deficient roots, early effects of B deficiency on their initiation and differentiation is poorly understood. Inhibited leaf expansion by low B indirectly decreases the photosynthetic capacity of plants, though exact roles of B in photosynthesis remain to be explored. The early inhibition of root growth, compared to shoot growth, increases the shoot:root ratio. It is hypothesised that this may enhance the susceptibility of plants to environmental stresses such as marginally deficient supplies of other nutrients and water deficit in soil.In the field, sexual reproduction is often more sensitive to low soil B than vegetative growth, and marked seed yield reductions can occur without symptoms being expressed during prior vegetative growth. In flowers, low B reduces male fertility primarily by impairing microsporogenesis and pollen tube growth. Post-fertilisation effects include impaired embryogenesis, resulting in seed abortion or the formation of incomplete or damaged embryos, and malformed fruit. However, there is a great diversity of effects of low B on reproductive growth among species, and within the same species between sites and seasons. Much of this diversity is not explained by the current literature. Key processes in reproductive development which may be impaired under B deficiency are proposed and discussed. These include the formation of a diverse array of cell wall types, the supply of carbohydrates for growth and storage reserves, and the production of flavonols. Inflorescence architecture, floral morphology, canopy structure and prevailing weather conditions are suggested as being important for xylem B delivery into flowers because of their impact on transpiration. The extent of phloem translocation of B into reproductive organs has yet to be fully assessed. The timing of B sensitive stages in reproduction of most crop plants need defining in order to facilitate appropriate timing of corrective B treatments.As most container studies have imposed B deficiency by withholding B, much of the data on severely B-deficient plants requires re-evaluation. Further studies are warranted to understand the effects of realistically low levels of B in solution on the growth of meristematic tissues and floral organs. A B-buffered solution culture system is recommended for some of this work.  相似文献   

14.
Boron (B)-deficient pumpkin (Cucurbita moschata Duchesne) plants exhibit reduced growth, and their tissues are brittle. The leaf cell walls of these plants contain less than one-half the amount of borate cross-linked rhamnogalacturonan II (RG-II) dimer than normal plants. Supplying germanium (Ge), which has been reported to substitute for B, to B-deficient plants does not restore growth or reduce tissue brittleness. Nevertheless, the leaf cell walls of the Ge-treated plants accumulated considerable amounts of Ge. Dimeric RG-II (dRG-II) accounted for between 20% and 35% of the total RG-II in the cell walls of the second to fourth leaves from Ge-treated plants, but only 2% to 7% of the RG-II was cross-linked by germanate (dRG-II-Ge). The ability of RG-II to form a dimer is not reduced by Ge treatment because approximately 95% of the monomeric RG-II generated from the walls of Ge-treated plants is converted to dRG-II-Ge in vitro in the presence of germanium oxide and lead acetate. However, dRG-II-Ge is unstable and is converted to monomeric RG-II when the Ge is removed. Therefore, the content of dRG-II-Ge and dRG-II-B described above may not reflect the actual ratio of these in muro. (10)B-Enriched boric acid and Ge are incorporated into the cell wall within 10 min after their foliar application to B-deficient plants. Foliar application of (10)B but not Ge results in an increase in the proportion of dRG-II in the leaf cell wall. Taken together, our results suggest that Ge does not restore the growth of B-deficient plants.  相似文献   

15.
Poliovirus receptor (hPVR/CD155) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily but its natural function remains unknown. Two membrane-bound isoforms, hPVRalpha and hPVRdelta, are known to date, and they differ only in the amino acid sequence of their cytoplasmic domains. To gain an insight into the possible function of the cytoplasmic domains, we examined the localization of introduced hPVRalpha and hPVRdelta in polarized epithelial cells deficient of native hPVRs. Basolateral sorting of hPVRalpha was observed in Madine-Darby canine kidney cells expressing mu1B, but not in LLC-PK1 porcine kidney cells deficient in mu1B. Distribution of hPVRdelta, however, occurred both on the apical and basolateral plasma membranes of these two cell lines. Basolateral sorting of hPVRalpha was also seen in LLC-PK1 cells that expressed an intact exogenous mu1B, but not in the cells that expressed a mutant mu1B lacking binding ability to tyrosine-containing signals. These results indicate that mu1B is involved in the distribution of hPVRalpha to the basolateral membrane. Comparative distribution analysis of hPVRalpha using a series of mutants with truncations and substitutions in the cytoplasmic tail demonstrated that determinant for the basolateral sorting resided in the tyrosine-containing motif of the cytoplasmic tail. Furthermore, yeast two hybrid analysis strongly suggested that the tyrosine motif directly interacted with mu1B protein. Thus, basolateral sorting of hPVRalpha appears to involve the interaction with mu1B through a tyrosine motif existing in the cytoplasmic domain.  相似文献   

16.
Shoot and root mass of tobacco plants treated with only 0.05 μM boron was decreased by 25 and 50 %, respectively, when compared to plants sufficiently supplied with B (2 and 5 μM). Leaf B content of 0.05 μM B-treated plants decreased (about 80–90 %) when compared to 2 μM B treated plants; this drop of B content were not as marked (about 25–45 %) in roots. Leaf and root nitrate contents in B-deficient plants were 45–60 % and 35–45 % lower, respectively, than those from 2 and 5 μM B treated plants. It is suggested that B deficiency might decrease nitrate uptake rather than nitrate reductase activity in tobacco plants.  相似文献   

17.
Boron in Plant Biology   总被引:6,自引:0,他引:6  
Abstract: The interest of biologists in boron (B) has largely been focused on its role in plants for which B was established as essential in 1923 (Warington, 1923[296]). Evidence that B has a biological role in other organisms was first indicated by the establishment of essentiality of B for diatoms (Smyth and Dugger, 1981[296]) and cyanobacteria (Bonilla et al., 1990[296]; Garcia‐Gonzalez et al., 1991[296]; Bonilla et al., 1997[296]). Recently, B was shown to stimulate growth in yeast (Bennett et al., 1999[296]) and to be essential for zebrafish (Danio rerio) (Eckhert and Rowe, 1999[296]; Rowe and Eckhert, 1999[296]) and possibly for trout (Oncorhynchus mykiss) (Eckhert, 1998[296]; Rowe et al., 1998[296]), frogs (Xenopus laevis) (Fort et al., 1998[296]) and mouse (Lanoue et al., 2000[296]). There is also preliminary evidence to suggest that B has at least a beneficial role in humans (Nielsen, 2000[296]). While research into the role of B in plants has been ongoing for 80 years it has only been in the past 5 years that the first function of B in plants has been defined. Boron is now known to be essential for cell wall structure and function, likely through its role as a stabilizer of the cell wall pectic network and subsequent regulation of cell wall pore size. A role for B in plant cell walls, however, is inadequate to explain all of the effects of B deficiency seen in plants. The suggestion that B plays a broader role in biology is supported by the discovery that B is essential for animals where a cellulose‐rich cell wall is not present. Careful consideration of the physical and chemical properties of B in biological systems, and of the experimental data from both plants and animals suggests that B plays a critical role in membrane structure and hence function. Verification of B association with membranes would represent an important advance in modern biology. For several decades there has been uncertainty as to the mechanisms of B uptake and transport within plants. This uncertainty has been driven by a lack of adequate methodology to measure membrane fluxes of B at physiologically relevant concentrations. Recent experimentation provides the first direct measurement of membrane permeability of B and illustrates that passive B permeation contributes sufficient B at adequate levels of B supply, but would be inadequate at conditions of marginal B supply. The hypothesis that an active, carrier mediated process is involved in B uptake at low B supply is supported by research demonstrating that B uptake can be stimulated by B deprivation, that uptake rates follow a Michaelis‐Menton kinetics, and can be inhibited by application of metabolic inhibitors. Since the mechanisms of element uptake are generally conserved between species, an understanding of the processes of B uptake is relevant to studies in both plants and animals. The study of B in plant biology has progressed markedly in the last decade and we are clearly on the cusp of additional, significant discoveries. Research in this field will be greatly stimulated by the discovery that B is essential for animals, a discovery that will not only encourage the participation of a wider cadre of scientists but will refocus the efforts of plant biologists toward a determination of roles for B outside the plant cell wall. Determination of the function of B in biology and of the mechanisms of B uptake in biological systems, is essential to our understanding and management of B deficiency and toxicity in plants and animals in both agricultural and natural environments. Through an analysis of existing data and the development of new hypotheses, this review aims to provide a vision of the future of research into the biology of boron.  相似文献   

18.

Key message

Boron efficiency of scion ‘Fengjie-72' is related to its less reduced boron concentration and distribution in leaves, achieved by decreasing the ratio of available boron in roots under boron-deficient conditions.

Abstract

Boron (B) deficiency is widespread in citrus orchards. Previous studies have demonstrated that the B-efficient navel orange scion ‘Fengjie-72' (Fs) and rootstock Carrizo citrange (Cr) are more tolerant to B deficiency than the closely related B-inefficient scion ‘Newhall’ (Ns) and rootstock trifoliate orange (Tr), respectively. However, the mechanisms underlying such differences remain unclear. Here, we investigated the differences in B distribution and forms among four combinations (Fs/Cr, Fs/Tr, Ns/Cr, and Ns/Tr) under adequate (0.25 mg/L) or deficient (0.001 mg/L) B supply for 300 days in sand culture. The results showed that B concentrations in buds and leaves of Fs-grafted plants were significantly higher than the respective concentrations of Ns-grafted plants under B-deficient conditions. Moreover, B distribution of Fs-grafted plants due to B deficiency was reduced less in leaves, but more in roots as compared to that of Ns-grafted plants. However, Ns/Cr accumulated more B in the scion stem (24 %) than the other combinations (17–19 %) when B was limited. A correlation was established between B efficiency and the ratio of B concentration in the rootstock stem or buds to the scion stem. Under B-deficient conditions, the ratio of available B (free B and semi-bound B) was significantly higher in leaves in Cr-grafted (36 %) than Tr-grafted plants (29 %), but lower in roots of Fs-grafted (22 %) than Ns-grafted plants (28 %). These results suggest that, under B-deficient conditions, differential B efficiency arises probably because Cr transports more B into scion, Fs redistributes B more efficiently within the plant, or both.  相似文献   

19.
Cell wall extensibility controls the rate of plant cell growth. It is determined by intrinsic mechanical properties of wall polymers and by wall proteins modifying these polymers and their interactions. Heat-inactivation of endogenous cell wall proteins inhibited acid-induced extension of onion epidermis peels transverse to the net cellulose alignment in the cell wall but not parallel to it. In the former case the acid-induced extension could be controlled by expansins and in the latter case by pectins restricting shear between microfibrils. Heat-inactivated cell walls stretched transversely to the net cellulose orientation extended faster at pH 5.7 and slower at pH 4.5 compared to native walls. Expansins seem to be inactive at pH 5.7, so that faster extension may result from heat-induced viscous flow of pectins and conformational changes in the cuticle of the epidermis. This stimulation of wall extension is not seen at pH 4.5 as it is outweighed by the inhibitory effect of expansin heat-inactivation. Thus, cell wall extension in higher plants might be controlled by a complex interplay between protein-dependent and protein-independent mechanisms, the result of which depends on pH and preferential orientation of main wall polymers.  相似文献   

20.
ABSTRACT: BACKGROUND: In dicotyledonous plant, the first asymmetric zygotic division and subsequent several cell divisions are crucial for proembryo pattern formation and later embryo development.. Arabinogalactan proteins (AGPs) are a family of extensively glycosylated cell surface proteins that are thought to have important roles in various aspects of plant growth and development, including embryogenesis. Previous results from our laboratory show that AGPs are concerned with tobacco egg cell fertilization and zygotic division. However, how AGPs interact with other factors involved in zygotic division and proembryo development remains unknown. RESULTS: In this study, we used the tobacco in vitro zygote culture system and series of meticulous cell biology techniques to investigate the roles of AGPs in zygote and proembryo cell division. For the first time, we examined tobacco proembryo division patterns detailed to every cell division. The bright-field images and statistical results both revealed that with the addition of an exogenous AGPs inhibitor, beta-glucosyl Yariv (beta-GlcY) reagent, the frequency of aberrant division increased remarkably in cultured tobacco zygotes and proembryos, and the cell plate specific locations of AGPs were greatly reduced after beta-GlcY treatment. In addition, the accumulations of new cell wall materials were also significantly affected by treating with beta-GlcY. Detection of cellulose components by Calcofluor white stain showed that strong fluorescence was located in the newly formed wall of daughter cells after the zygotic division of in vivo samples and the control samples from in vitro culture without beta-GlcY treatment; while there was only weak fluorescence in the newly formed cell walls with beta-GlcY treatment. Immunocytochemistry examination with JIM5 and JIM7 respectively against the low- and high-esterified pectins displayed that these two pectins located in opposite positions of zygotes and proembryos in vivo and the polarity was not affected by beta-GlcY. Furthermore, FM4-64 staining revealed that endosomes were distributed in the cell plates of proembryos, and the localization pattern was also affected by beta-GlcY treatment. These results were further confirmed by subsequent observation with transmission electron microscopy. Moreover, the changes to proembryo cell-organelles induced by beta-GlcY reagent were also observed using fluorescent dye staining technique. CONCLUSIONS: These results imply that AGPs may not only relate to cell plate position decision, but also to the location of new cell wall components. Correlated with other factors, AGPs further influence the zygotic division and proembryo pattern establishment in tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号