首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Identification of centromere proteins in different mammalian cells   总被引:1,自引:0,他引:1  
The characterization of centromeric proteins is facilitated using anti-centromere antibodies present in the sera of patients with the CREST variant of scleroderma. We have employed these sera to determine whether or not those proteins are present in different mammalian species, as well as to study their tissue distribution. Here, we describe the immunofluorescent pattern and the proteins recognized by CREST sera in dividing and resting cells from mouse, rat, swine, hamster, rabbit, and man. In nuclear preparations from cultured cells, thymocytes and spermatozoa from these species, the antigens recognized by CREST sera are proteins of 18 to 20 kDa in all species tested, except in rat. Additionally, two peptides of 80 and 140 kDa were observed in human preparations. In contrast, a 50 kDa peptide is the primary protein detected by the sera in rat nuclei.  相似文献   

2.
Infective third-stage larvae of Dirofilaria immitis were collected from Aedes aegypti and cultured in vitro to the fourth stage. Larval proteins were labeled metabolically using [35S]cysteine and methionine in different media and for different lengths of time. Labeled proteins in the excretory-secretory component and the larval homogenates were evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions and by 2-dimensional gel electrophoresis. Numerous proteins ranging from 14 to greater than 200 kDa were identified from both the excretory-secretory components and the larval homogenates. Both fractions demonstrated shared and unique proteins. Using timed labeling, age- and stage-specific proteins were identified; at least 2 proteins of approximately 20.5 and 22 kDa were associated in time with the molt from the third to fourth stage. Two proteins of the same molecular weight were specifically recognized by immune dog sera, but not by sera of their infected nonimmune cohorts.  相似文献   

3.
Mouse sera against outer membrane proteins from Moraxella catarrhalis, Neisseria meningitidis and Neisseria lactamica, and human sera from both healthy individuals and patients convalescing from meningococcal meningitis were used to identify cross-reactive antigens. Mouse anti-N. meningitidis and anti-N. lactamica sera recognized 77, 62 and 32 kDa outer membrane antigens in M. catarrhalis strains; on the contrary, the meningococcal porin PorB (38-42 kDa) was recognized by one of the two anti-M. catarrhalis sera. Human sera from both healthy individuals and patients convalescing from meningococcal meningitis also showed cross-reactive antibodies against these proteins. The existence of cross-reactive antigens in M. catarrhalis and N. meningitidis (as well as in N. lactamica) could favor the development of natural immunization against both pathogens.  相似文献   

4.
Outer membrane complex proteins of Chlamydia pneumoniae   总被引:3,自引:0,他引:3  
Abstract The protein composition of the outer membrane complex (OMC) of Chlamydia pneumoniae strain AR-39 was analyzed by metabolic labeling with [35S]methionine and [35S]cysteine. Cysteine-rich proteins with molecular masses of 98, 60 doublet, 39.5 (MOMP) and 15.5 kDa were found in the OMC of C. pneumoniae . The cysteine-rich proteins of the OMCs of the threee Chlamydia species showed specific reaction patterns by immunoassay and autoradiography to rabbit or turkey immune sera. Recognition of the MOMP and 60-kDa proteins of the three species was cross-reactive. However, the C. pneumoniae 98-kDa protein was recognized by anti- C. pneumoniae (AR-39) and anti- C. psittaci (TT3) immune sera. None of the immunee sera recognized the 12-kDa cysteine-rich complex.  相似文献   

5.

Background

Zoonotic cutaneous leishmaniasis (ZCL) due to Leishmania major is highly prevalent in Tunisia and is transmitted by a hematophagous vector Phlebotomus papatasi (P. papatasi). While probing for a blood meal, the sand fly injects saliva into the host''s skin, which contains a variety of compounds that are highly immunogenic. We recently showed that the presence of anti-saliva antibodies was associated with an enhanced risk for leishmaniasis and identified the immunodominant salivary protein of Phlebotomus papatasi as a protein of approximately 30 kDa.

Methodology/Principal Findings

We cloned and expressed in mammalian cells two salivary proteins PpSP30 and PpSP32 with predicted molecular weights close to 30 kDa from the Tunisian strain of P. papatasi. The two recombinant salivary proteins were purified by two-step HPLC (High-Performance Liquid Chromatography) and tested if these proteins correspond to the immunodominant antigen of 30 kDa previously shown to be recognized by human sera from endemic areas for ZCL and exposed naturally to P. papatasi bites. While recombinant PpSP30 (rPpSP30) was poorly recognized by human sera from endemic areas for ZCL, rPpSP32 was strongly recognized by the tested sera. The binding of human IgG antibodies to native PpSP32 was inhibited by the addition of rPpSP32. Consistently, experiments in mice showed that PpSP32 induced the highest levels of antibodies compared to other P. papatasi salivary molecules while PpSP30 did not induce any detectable levels of antibodies.

Conclusions

Our findings demonstrate that PpSP32 is the immunodominant target of the antibody response to P. papatasi saliva. They also indicate that the recombinant form of PpSP32 is similar to the native one and represents a good candidate for large scale testing of human exposure to P. papatasi bites and perhaps for assessing the risk of contracting the disease.  相似文献   

6.
The human pathogen Group A Streptococcus (Streptococcus pyogenes, GAS) is widely recognized as a major cause of common pharyngitis as well as of severe invasive diseases and non-suppurative sequelae associated with the existence of GAS antigens eliciting host autoantibodies. It has been proposed that a subset of paediatric disorders characterized by tics and obsessive-compulsive symptoms would exacerbate in association with relapses of GAS-associated pharyngitis. This hypothesis is however still controversial. In the attempt to shed light on the contribution of GAS infections to the onset of neuropsychiatric or behavioral disorders affecting as many as 3% of children and adolescents, we tested the antibody response of tic patient sera to a representative panel of GAS antigens. In particular, 102 recombinant proteins were spotted on nitrocellulose-coated glass slides and probed against 61 sera collected from young patients with typical tic neuropsychiatric symptoms but with no overt GAS infection. Sera from 35 children with neither tic disorder nor overt GAS infection were also analyzed. The protein recognition patterns of these two sera groups were compared with those obtained using 239 sera from children with GAS-associated pharyngitis. This comparative analysis identified 25 antigens recognized by sera of the three patient groups and 21 antigens recognized by tic and pharyngitis sera, but poorly or not recognized by sera from children without tic. Interestingly, these antigens appeared to be, in quantitative terms, more immunogenic in tic than in pharyngitis patients. Additionally, a third group of antigens appeared to be preferentially and specifically recognized by tic sera. These findings provide the first evidence that tic patient sera exhibit immunological profiles typical of individuals who elicited a broad, specific and strong immune response against GAS. This may be relevant in the context of one of the hypothesis proposing that GAS antigen-dependent induction of autoantibodies in susceptible individuals may be involved the occurrence of tic disorders.  相似文献   

7.
We have identified the major antigens or IgE binding components from wheat flour. Thirty-five sera from patients with baker's asthma were used to analyze the reaction with wheat salt-soluble proteins. We found a 15 kDa SDS-PAGE band which reacted with all sera tested. Purified members of the alpha-amylase inhibitor family, which are the main components of the 15 kDa band, were recognized by specific IgE when tested with a pool of reactive sera. Immunodetection after two-dimensional electrophoretic fractionation of crude inhibitor preparations from wheat endosperms also detected several inhibitor subunits as major low-molecular-weight allergens.  相似文献   

8.
We examined Mycoplasma penetrans-specific antibodies in sera of five male homosexual AIDS patients from whom M. penetrans was isolated during the disease process. No consistent immune reaction pattern could be recognized in Western blot using whole cell proteins. Serum samples obtained prior to M. penetrans isolation reacted with a number of M. penetrans proteins, most likely due to non-specific cross-reactions. Further analysis revealed that patients produced prominent antibody reaction to lipid-associated membrane proteins (LAMPs) of M. penetrans at the time of mycoplasma isolation, which could not be observed for serum samples obtained prior to M. penetrans isolation. The positive antibody reaction was mainly directed against two major LAMPs of M. penetrans with molecular mass of 35 and 38 kDa and produced a distinctive pattern of positive immunoreaction bands. Our observation suggested that, comparing with whole mycoplasmal proteins, LAMPs were more specific target antigens in serological assays for M. penetrans infection.  相似文献   

9.
10.
The putative envelope protein of hepatitis C virus (HCV) was expressed in insect cells by using a baculovirus expression vector and in monkey COS cells under the control of exogenous promoters. The expressed envelope proteins, identified by immunoblot analysis using sera from patients with chronic HCV infection, were a series of glycoproteins of 35 to 24 kDa (gp35-24) in insect cells and a single species of glycoprotein of 35 kDa (gp35) in monkey cells. The size difference of these proteins was due to the different degrees of glycosylation. The envelope proteins expressed in these cells were produced by common specific cleavage from the precursor protein, and cleavage positions of the envelope protein were mapped at about amino acids 190 and 380. The gp35-24 proteins expressed in insect cells were used for detection of antibody against HCV envelope protein in patient sera. The results showed that (i) the antibody is detected in 2 to 17% of various patients with hepatitis C, (ii) three patients were apparently cured after acquiring the antienvelope antibody, and (iii) in sera of patients with more than a 20-year history of infection, the antibody sometimes coexisted with HCV. These results suggest that the antienvelope antibody is neutralizing only in limited number of patients with hepatitis C.  相似文献   

11.
Using Western blot techniques, the specificities of crude and purified (PAK and PAS) Anisakis simplex antigens were compared against 24 sera from patients diagnosed with Anisakis sensitization. All patients recognized a 60 kDa protein against the A. simplex crude extract, while 37.5% and 12.5% reacted with proteins of 40 and 25 kDa, respectively, when IgG was tested. In the case of IgE determination, 41.6% of sera were negative, while 12.5% and 20.8% appeared to cross-react against Toxocara canis and Ascaris suum, respectively. When the PAK antigen (A. simplex antigen purified by means of a column of IgG anti-A. simplex) was tested, immune recognition towards the 60, 40 and 25 kDa proteins increased in 83.3%, 16.7% and 4.2%, respectively, when the Ig antibodies were tested. In the case of the PAS antigen (PAK antigen purified by means of a column of IgG anti-A. suum), the reaction against the 40 and 25 kDa proteins increased to 45.8% and 25%, respectively, when Ig antibodies were used. Finally, when the EAS antigen (eluted from the anti-A. suum column after PAK purification) was tested, 83.3% of the assayed sera reacted against the 14 kDa protein, when the Ig antibodies, IgG and IgM immunoglobulins were measured. With the IgE determination, the reactions were observed in 41.7% of patients with proteins between 60 and 35 kDa against the PAS antigen. With the EAS antigen, reactive bands of 184, 84 and 14 kDa appeared. In conclusion, in the purification process of the A. simplex larval crude extract, the proteins implicated in cross-reactions with Ascaris and Toxocara were eliminated, with an important concentration of proteins responsible for the induction of specific responses.  相似文献   

12.
Three major yolk proteins, vitellin, egg-specific protein and 30 kDa proteins, were purified from the same extracts of Bombyx mori eggs by high-performance liquid chromatography on a molecular sieving column. Each preparation was judged to be homogeneous by polyacrylamide gel electrophoresis. The subunit structure was estimated to be as follows: vitellin is a tetramer with a molecular mass of 420 kDa, consisting of two heavy subunits (178 kDa) and two light subunits (43 kDa); egg-specific protein is a trimer (225 kDa) of two heavy subunits (72 kDa) and one light subunit (64 kDa); 30 kDa proteins are a mixture of three monomers (1, 2 and 3) consisting of respective subunit molecular masses of 32.0, 31.0 and 29.5 kDa. The three yolk proteins contained the usual amino acids together with various lipids and carbohydrates. Antisera to each protein did not cross-react. The titration of vitellin, egg-specific protein and 30 kDa proteins on rocket immunoelectrophoresis showed a differential accumulation pattern during the course of oogenesis. In newly laid eggs, vitellin, egg-specific protein and 30 kDa proteins accounted for approx. 40%, 25% and 35%, respectively, in weight. The eggs developed in male hosts after implantation of ovary discs were deficient in vitellin but contained egg-specific protein and 30 kDa proteins at comparable levels to the normal female eggs. During embryogenesis, egg-specific protein was rapidly and completely utilized. Approx. 35% vitellin and 50% 30 kDa proteins remained unused and were carried over to the hatched larvae. Such accumulation and utilization of yolk proteins are correlated with the fates of the proteins during oogenesis and embryogenesis of B. mori.  相似文献   

13.
Four structural proteins of Lelystad virus (Arteriviridae) were recognized by monoclonal antibodies in a Western immunoblotting experiment with purified virus. In addition to the 18-kDa integral membrane protein M and the 15-kDa nucleocapsid protein N, two new structural proteins with molecular masses of 45 to 50 kDa and 31 to 35 kDa, respectively, were detected. Monoclonal antibodies that recognized proteins of 45 to 50 kDa and 31 to 35 kDa immunoprecipitated similar proteins expressed from open reading frames (ORFs) 3 and 4 in baculovirus recombinants, respectively. Therefore, the 45- to 50-kDa protein is encoded by ORF3 and the 31- to 35-kDa protein is encoded by ORF4. Peptide-N-glycosidase F digestion of purified virus reduced the 45- to 50-kDa and 31- to 35-kDa proteins to core proteins of 29 and 16 kDa, respectively, which indicates N glycosylation of these proteins in the virion. Monoclonal antibodies specific for the 31- to 35-kDa protein neutralized Lelystad virus, which indicates that at least part of this protein is exposed at the virion surface. We propose that the 45- to 50-kDa and 31- to 35-kDa structural proteins of Lelystad virus be named GP3 and GP4, to reflect their glycosylation and the ORFs from which they are expressed. Antibodies specific for GP3 and GP4 were detected by a Western immunoblotting assay in swine serum after an infection with Lelystad virus.  相似文献   

14.
An antigenic profile of adult Paramphistomum cervi was revealed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using sera from cattle naturally infected with P. cervi, Fasciola gigantica and strongylids. SDS-PAGE of whole worm extracts exhibited 26 distinct protein bands. Immunoblotting analysis of these proteins showed five major antigenic bands which were recognized by serum of individual cattle naturally infected with P. cervi. These antigenic proteins had molecular weights ranging from 23 to 116kDa. One antigenic protein with a molecular weight of 52kDa exhibited a consistent reaction with sera from all infected cattle. It's diagnostic sensitivity, specificity and accuracy using this test were 100%, 98% and 98.9%, respectively. The positive and negative predictive values were 97.6% and 100%, respectively. This finding suggests that the 52kDa protein may be a diagnostic antigen for paramphistomosis.  相似文献   

15.
The recombinant form of a highly immunogenic 14.6 kDa protein in Triatoma infestans saliva (rTiSP14.6) is a potential epidemiological marker for the detection of triatomine bug populations using IgG responses in peridomestic chickens. However, the persistence of the IgG response prevents it being of value for several months in areas where triatomine control programmes have been implemented. In this investigation, IgM-antibody reactions to crude salivary antigens or rTiSP14.6 decayed rapidly after exposure of chickens and were measurable for only 18 days after a single challenge with T. infestans. In serial exposure experiments, chickens from low and high exposure groups showed no significant differences in anti-saliva and anti-rTiSP14.6 IgM-antibody titres. Highly immunogenic salivary antigens of 12 and 14 kDa were recognised by all chicken sera. Sera from peridomestic chickens from sites of known T. infestans infestation in Bolivia also recognised these two antigens and no differences in the IgM responses of sera from chickens from low and high infestation households were detected. IgM responses were specific to infested households and could not be detected in sera from non-infested households. Cross-reactivity studies showed that at least four other triatomine species share the 14.6 kDa salivary antigen. No IgM responses were detected against salivary proteins of mosquitoes and sandflies. Thus, we believe that rTiSP14.6 represents a promising epidemiological marker for the detection of low numbers of triatomines in peridomestic habitats, and the comparison of IgM and IgG responses can be used to detect re-infestation soon after insecticide-based control programmes.  相似文献   

16.
The only major structural protein (35 kDa) of the lactococcal small isometric-headed bacteriophage ul36, a member of the P335 species, was isolated from a preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Monoclonal antibodies (MAbs) were raised against the denatured 35-kDa protein. Six MAbs were selected and characterized. Western blots (immunoblots) showed that all MAbs recognized the 35 kDa but also a 45 kDa that is in lower concentration in the phage structure. Binding inhibition assays identified five families of MAbs that recognized nonoverlapping epitopes of the 35- and 45-kDa proteins. Immunoelectron microscopy showed that these two proteins are localized within the phage head, therefore indicating that the 35 kDa is a major capsid protein of ul36 and that the 45 kDa is a minor capsid protein. With two MAbs, a sandwich enzyme-linked immunosorbent assay (ELISA) was developed for direct detection of lactococcal phages in whey and milk samples. Whey and milk components, however, interfered with the conduct of the assay. Partial denaturation of milk samples by heat treatment in the presence of SDS and β-mercaptoethanol removed the masking effect and increased the sensitivity of the assay by 100-fold. With the method used here, 107 PFU/ml were detected by the ELISA within 2 h without any steps to enrich or isolate bacteriophages.  相似文献   

17.

Background

Protection and recovery from visceral leishmaniasis (VL) have been associated with cell-mediated immune (CMI) responses, whereas no protective role has been attributed to humoral responses against specific parasitic antigens. In this report, we compared carefully selected groups of individuals with distinct responses to Leishmania chagasi to explore antigen-recognizing IgG present in resistant individuals.

Methodology and Principal Findings

VL patients with negative delayed-type hypersensitivity (DTH) were classified into the susceptible group. Individuals who had recovered from VL and converted to a DTH+ response, as well as asymptomatic infected individuals (DTH+), were categorized into the resistant group. Sera from these groups were used to detect antigens from L. chagasi by conventional and 2D Western blot assays. Despite an overall reduction in the reactivity of several proteins after DTH conversion, a specific group of proteins (approximately 110–130 kDa) consistently reacted with sera from DTH converters. Other antigens that specifically reacted with sera from DTH+ individuals were isolated and tandem mass spectrometry followed by database query with the protein search engine MASCO were used to identify antigens. The serological properties of recombinant version of the selected antigens were tested by ELISA. Sera from asymptomatic infected people (DTH+) reacted more strongly with a mixture of selected recombinant antigens than with total soluble Leishmania antigen (SLA), with less cross-reactivity against Chagas disease patients'' sera.

Significance

Our results are the first evidence of leishmania proteins that are specifically recognized by sera from individuals who are putatively resistant to VL. In addition, these data highlight the possibility of using specific proteins in serological tests for the identification of asymptomatic infected individuals.  相似文献   

18.
Sparganosis is caused by invasion of Spirometra plerocercoid into various tissues/organs. Subcutaneous sparganosis can be diagnosed and treated by worm removal, while visceral/cerebral sparganosis is not easy to diagnose. The diagnosis depends largely on the detection of specific antibodies circulating in the patients' sera. Previous studies demonstrated that 31 and 36kDa proteins of the sparganum invoked specific and sensitive antibody responses, but also showed cross reactions with cysticercosis sera. We enriched protein fractions containing 31-36kDa through gel filtration and examined immune recognition pattern against the patient sera by 2-dimensional electrophoresis (2-DE) followed by immunoblotting. Serum samples from sparganosis patients recognized 8-10 protein spots of 31 and 36kDa with different isoelectric point (pI) values with variable combinations, in which four spots of 31kDa with pIs 3.4, 3.9, 4.0 and 4.1, and one 36kDa spot (pI 3.5) appeared to be specifically reactive. One 31kDa protein spot with pI 3.3 and two spots of 36kDa with pIs 3.3 and 3.5 reacted crossly with neurocysticercosis sera. Neither sera from patients with other parasitic infections nor those from healthy controls showed positive reaction. Two-DE/immunoblot analysis might be highly available in differential serodiagnosis of human sparganosis.  相似文献   

19.

Background

Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure.

Methodology and Principal Findings

In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs.

Conclusion

Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure.  相似文献   

20.
The Trypanosoma rangeli-secreted sialidase was purified by bovine submaxillary gland mucin-sepharose affinity chromatography. In immunoblotting analysis, antibodies raised against this molecule recognized polypeptides of 73 kDa in T. rangeli medium supernatant (TrSialr) and of 70 kDa in the cell lysates of T. rangeli (TrSials) and T. cruzi (TcSialL) epimastigotes. TrSialr, TrSials, and TcSialL were subjected to proteolytic cleavage with papain; the resultant peptide pattern displayed differences in the immunoblotting profiles. TrSials was purified by immunoprecipitation, and this protein band was recognized by sera from T. cruzi-infected chronic mice and Chagas' disease patients. In contrast, TrSialr was not recognized by these sera. The antibodies from the infected mice also recognized a band of 70 kDa present in the medium. These preliminary observations imply that the released and somatic sialidases are partially different molecules, with probably different biological roles. The related proteins recognized in T. rangeli and T. cruzi epimastigotes share many antigenic characteristics but have some structural differences, probably related to their function in the parasitic cell. On the basis of the strong antigenicity of TrSials, this molecule is proposed as the antigen for the detection of antibodies arising during T. cruzi infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号