首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
L. Pogliani 《Amino acids》1995,9(3):217-228
Summary The linear combinations of connectivity indices method (LCCI) is here employed to model the water solubility and activity of 19 natural amino acids. Starting with the molecular connectivity indices, reciprocal and supra molecular connectivity indices are designed to model the solubility and activity spaces of the natural amino acids. The reciprocal and supra molecular reciprocal connectivity indices have been obtained following the variability of the connectivity indices along solubility space of the natural amino acids. A linear combination of the reciprocals of the connectivity indices (LCRCI) showed a satisfactory modelling of the solubility and activity space while a model based on the LCRCI together with the introduction of supra reciprocal molecular connectivity indices for Pro, Ser and Arg achieved an optimal modelling of the solubility and activity space of the natural amino acids. Because the properties are a consequence of the structure (Kier and Hall, 1986)  相似文献   

2.
2(S),3′(S)-N-(3-Amino-3-carboxypropyl)azetidine-2-carboxylic acid and 2(S),3′(S),3″(S)-N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid have been isolated from seeds of Fagus silvatica L. (beechnuts). The structures have been established by PMR- and 13C-NMR-spectroscopy and by synthesis from l-azetidine-2-carboxylic acid. The second of the new amino acids is identical with nicotianamine. previously isolated from Nicotiana tabacum but assigned a different formula. The ring opening reactions of azetidine-2-carboxylic acid in neutral solution have been studied and the chemical and possibly biochemical precursor role of this amino acid for various amino acids including the two new ones described here, nicotianine [N-(3-amino-3-carboxypropyl)nicotinic acid] and methionine is discussed.  相似文献   

3.
Hack E  Kemp JD 《Plant physiology》1980,65(5):949-955
A single enzyme catalyzes the synthesis of all four N2-(1-carboxyethyl)-amino acid derivatives found in a crown gall tumor tissue induced by Agrobacterium tumefaciens (E. F. Sm. and Town.) Conn strain B6 on sunflower (Helianthus annuus L.). This enzyme, octopine synthase, has been purified by ammonium sulfate fractionation and chromatography on diethylaminoethylcellulose, blue agarose, and hydroxylapatite. The purified enzyme has all the N2-(1-carboxyethyl)-amino acid synthesizing activities found in crude preparations, and the relative activities with six amino acids remain nearly constant during purification. Although the maximum velocities (V) and Michaelis constants (Km) differ, the ratio V/Km is the same for all amino acid substrates. Thus an equimolar mixture of amino acids will give rise to an equimolar mixture of products. The kinetic properties of the enzyme are consistent with a partially ordered mechanism with arginine (NADPH, then arginine or pyruvate). Octopine synthase is a monomeric enzyme with a molecular weight of 39,000 by gel filtration and 38,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

4.
Indole-3-acetic acid (IAA)-amino acid amide conjugates have been found to be present in many plants, and they are proposed to function in the regulation of plant IAA metabolism in a variety of ways. IAA-amino acid conjugate hydrolase activities, and the genes that encode them, are therefore potentially important tools for modification of IAA metabolism, both for agronomic reasons as well as for determination of the mechanisms of IAA regulation. We have developed a simple and economical method to induce IAA-amino acid conjugate hydrolases in bacteria with N-acetyl-L-amino acids. Using this method, we identified four bacterial strains that can be induced to produce IAA-Ala hydrolases: Arthrobacter ureafaciens C-10, Arthrobacter ureafaciens C-50, Arthrobacter ilicis D-50, and Cellulomonas fimi D-100. The enzyme kinetics and the biochemical characteristics of IAA-Ala hydrolase from one specific bacterium, Arthrobacter ilicis D-50, have been determined. The enzyme has a unique substrate specificity for IAA-amino acid conjugates compared to a bacterial IAA-Asp hydrolase previously characterized.  相似文献   

5.
The structures of the cell wall teichoic acids (TA) from some species of the genus Nocardiopsis were established by chemical and NMR spectroscopic methods. The cell walls of Nocardiopsis synnemataformans VKM Ac-2518T and Nocardiopsis halotolerans VKM Ac-2519T both contain two TA with unique structures—poly(polyol phosphate-glycosylpolyol phosphate)—belonging to the type IV TA. In both organisms, the minor TA have identical structures: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-4 of the amino sugar. This structure is found for the first time. The major TA of N. halotolerans has a hitherto unknown structure: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate), the N-acetyl-β-galactosamine being acetalated with pyruvic acid at positions 4 and 6. The major TA of N. synnemataformans is a poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-3 of the amino sugar. The cell walls of Nocardiopsis composta VKM Ac-2520 and N. composta VKM Ac-2521T contain only one TA, namely 1,3-poly(glycerol phosphate) partially substituted with N-acetyl-α-glucosamine. The cell wall of Nocardiopsis metallicus VKM Ac-2522T contains two TA. The major TA is 1,5-poly(ribitol phosphate), each ribitol unit carrying a pyruvate ketal group at positions 2 and 4. The structure of the minor TA is the same as that of N. composta. The results presented correlate well with the phylogenetic grouping of strains and confirm the species and strain specific features of cell wall TA in members of the genus Nocardiopsis.  相似文献   

6.
7.
Chemical synthesis of mixed diesters of ethanediol with N-acyl amino acids and fatty acids is described. The synthesis is performed in three steps: (1) preparation of N-acyl amino acids using fatty acid ester of N-hydroxyphthalimide as an acylating agent; (2) partial esterification of ethanediol with N-acyl amino acid, in tetrahydrofuran in presence of thionyl chloride; (3) further esterification of the monoester of ethanediol with a fatty acid, to a mixed diester, in presence of the same reagent.  相似文献   

8.
In Niemann-Pick disease, type C1, increased amounts of 3β,7β-dihydroxy-5-cholenoic acid are reported to be present in urinary bile acids. The compound occurs as a tri-conjugate, sulfated at C-3, N-acetylglucosamidated at C-7, and N-acylamidated with taurine or glycine at C-24. For sensitive LC-MS/MS analysis of this bile acid, a suitable internal standard is needed. We report here the synthesis of a satisfactory internal standard, 3β-sulfooxy-7β-hydroxy-24-nor-5-cholenoic acid (as the disodium salt). The key reactions involved were (1) the so-called “second order” Beckmann rearrangement (one-carbon degradation at C-24) of hyodeoxycholic acid (HDCA) 3,6-diformate with sodium nitrite in a mixture of trifluoroacetic anhydride and trifluoroacetic acid, (2) simultaneous inversion at C-3 and elimination at C-6 of the ditosylate derivatives of the resulting 3α,6α-dihydroxy-24-nor-5β-cholanoic acid with potassium acetate in aqueous N,N-dimethylformamide, and (3) regioselective sulfation at C-3 of an intermediary 3β,7β-dihydroxy-24-nor-Δ5 derivative using sulfur trioxide-trimethylamine complex. Overall yield of the desired compound was 1.8% in 12 steps from HDCA.  相似文献   

9.
10.
The contents of amino acids and peptides have been investigated in seeds of Fagus silvatica L. (beechnuts). In addition to the common amino acids, the following compounds have been isolated and identified: 4-hydroxyproline (probably the cis-l-isomer), N5-acetylornithine, 3-(2-furoyl)-l-alanine, methionine sulfoxide (probably an artefact), pipecolic acid (probably partially racemized d-isomer), l-willardiine (with a small amount of the d-isomer), N-(3-amino-3-carboxypropyl)azetidine-2-carboxylic acid, N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid, 2(S),5(S),6(S)-5-hydroxy-6-methylpipecolic acid, 2(S),5(R),6(S)-5-hydroxy-6-methylpipecolic acid, γ-glutamylalanine, γ-glutamylglutamic acid, γ-glutamylisoleucine, γ-glutamylleucine, γ-glutamylmethionine sulfoxide (probably an artefact), γ-glutamylphenylalanine, γ-glutamyltyrosine, γ-glutamylvaline, glutathione, γ-glutamylwillardiine, and γ-glutamylphenylalanylwillardiine. γ-Glutamylphenylalanine and willardiine are the dominating components of the amino acid fraction.The isolations were performed by use of ion exchange chromatography, taking advantage of the different pK-values of the amino acids, mainly on acid resins in the 3-chloropyridinium form with aq. 3-chloropyridine as eluant and on basic resins in the acetate form with aqueous acetic acid as eluant. These methods in combination with preparative paper chromatography have permitted the isolation and identification of compounds present in amounts as low as 1/6000 of the dominant ninhydrin-reactive component. The implications of the occurrence of this large variety of compounds in the Fagaceae are briefly discussed.  相似文献   

11.
R Katakai  M Oya  Y Iwakura 《Biopolymers》1975,14(7):1315-1326
As an approach for elucidating the role of sequences of amino acids in protein structures, model polypeptides having the same composition but different sequences of amino acids, (L -Ala-L -Val-Gly)n and (L -Val-L -Ala-Gly)n, have been prepared by the method involving facile monomer synthesis using N-carboxy α-amino acid anhydrides and N-hydroxysuccinimide esters. The yields and the molecular weights of the polypeptides formed by polycondensation do not depend on the monomer concentrations, but on the sequences of the amino acids in the monomers. Infrared spectra in the solid state showed that (L -Ala-L -Val-Gly)n can take the α-helical conformation but (L -Val-L -Ala-Gly)n cannot. The results suggest that the conformations of polypeptides are influenced by the sequences of the amino acids in the polypeptides.  相似文献   

12.
Aldehyde dehydrogenases (ALDHs) catalyze the conversion of various aliphatic and aromatic aldehydes into corresponding carboxylic acids. Traditionally considered as housekeeping enzymes, new biochemical roles are being identified for members of ALDH family. Recent work showed that AldA from the plant pathogen Pseudomonas syringae strain PtoDC3000 (PtoDC3000) functions as an indole-3-acetaldehyde dehydrogenase for the synthesis of indole-3-acetic acid (IAA). IAA produced by AldA allows the pathogen to suppress salicylic acid-mediated defenses in the model plant Arabidopsis thaliana. Here we present a biochemical and structural analysis of the AldA indole-3-acetaldehyde dehydrogenase from PtoDC3000. Site-directed mutants targeting the catalytic residues Cys302 and Glu267 resulted in a loss of enzymatic activity. The X-ray crystal structure of the catalytically inactive AldA C302A mutant in complex with IAA and NAD+ showed the cofactor adopting a conformation that differs from the previously reported structure of AldA. These structures suggest that NAD+ undergoes a conformational change during the AldA reaction mechanism similar to that reported for human ALDH. Site-directed mutagenesis of the IAA binding site indicates that changes in the active site surface reduces AldA activity; however, substitution of Phe169 with a tryptophan altered the substrate selectivity of the mutant to prefer octanal. The present study highlights the inherent biochemical versatility of members of the ALDH enzyme superfamily in P. syringae.  相似文献   

13.
1. Bovine bone sialoprotein (mol.wt. 23000) contains N-acetylneuraminic acid and N-glycollylneuraminic acid, fucose, galactose, mannose, N-acetylgalactosamine and N-acetylglucosamine residues in the form of a very small number, perhaps one, of highly branched oligosaccharide structures linked covalently to peptide. 2. Periodate oxidation of the sialoprotein results in quantitative destruction only of the sialic acid and fucose residue consistent with the earlier findings of their positions as terminal groups. 3. Terminal sialic acid residues are attached to galactopyranose residues by 2,3-linkages, and to some N-acetylgalactosamine residues (at C-6). 4. Sequential Smith degradation indicates that N-acetylgalactosamine residues may be present as points of branching (linked in C-1, C-3 and C-6) and N-acetylglucosamine residues are located in the inner part of the structure, adjacent to the carbohydrate–peptide bond(s). 5. Mannose residues appear to be linked in the 1,3-positions.  相似文献   

14.
Indole-3-acetic acid (IAA) amidosynthetases catalyzing the ATP-dependent conjugation of IAA and amino acids play an important role in the maintenance of auxin homeostasis in plant cells. A new amidosynthetase, indole-3-acetic acid:l-aspartic acid ligase (IAA-Asp synthetase) involved in IAA-amino acid biosynthesis, was isolated via a biochemical approach from immature seeds of the pea (Pisum sativum L). The enzyme was purified to homogeneity by a three-step procedure, involving PEG 6000 fractionation, DEAE-Sephacel anion-exchange chromatography, and preparative PAGE, and characterized as a 70-kDa monomeric protein by analytical gel filtration and SDS-PAGE. Rabbit antiserum against recombinant AtGH3.5 cross-reacted with the pea IAA-Asp synthetase, and a single immunoreactive polypeptide band was observed at 70 kDa. The purified enzyme had an apparent isoelectric point at pH 4.7, the highest activity at pH 8.2, preferred Mg2+ as a cofactor, and was strongly activated by reducing agents. Similar to known recombinant GH3 enzymes, an IAA-Asp synthetase from pea catalyzes the conjugation of phytohormone acyl substrates to amino acids. The enzyme had the highest synthesizing activity on IAA, followed by 1-NAA, SA, 2,4-D, and IBA, whereas activities on l-Trp, IPA, PAA, (±)JA, and 2-NAA were not significant or not detected. Of 14 amino acids tested, the enzyme had the highest activity on Asp and lower activity on Ala and Lys. Glutamate was found to be a very poor substrate and no conjugating activity was observed on the rest of the amino acids. Steady-state kinetic analysis indicated that IAA and aspartate were preferred substrates for the pea IAA-Asp synthetase. The enzyme exhibited both higher affinities for IAA and Asp (K m = 0.2 and 2.5 mM, respectively) and catalytic efficiencies (k cat/K m = 682,608.7 and 5080 s−1 M−1, respectively) compared with other auxins and amino acids examined. This study describes the first amidosynthetase isolated and purified from plant tissue and provides the foundation for future genetic approaches to explain the role of IAA-Asp in Pisum sativum physiology.  相似文献   

15.
Sixty-one strains of alkane-oxidizing bacteria were tested for their ability to oxidize N-(2-hexylamino-4-phenylimidazol-1-yl)-acetamide to imidazol-2-yl amino acids applicable for pharmaceutical purposes. After growth with n-alkane, 15 strains formed different imidazol-2-yl amino acids identified by chemical structure analysis (mass and nuclear magnetic resonance spectrometry). High yields of imidazol-2-yl amino acids were produced by the strains Gordonia rubropertincta SBUG 105, Gordonia terrae SBUG 253, Nocardia asteroides SBUG 175, Rhodococcus erythropolis SBUG 251, and Rhodococcus erythropolis SBUG 254. Biotransformation occurred via oxidation of the alkyl side chain and produced 1-acetylamino-4-phenylimidazol-2-yl-6-aminohexanoic acid and the butanoic acid derivative. In addition, the acetylamino group of these products and of the substrate was transformed to an amino group. The product pattern as well as the transformation pathway of N-(2-hexylamino-4-phenylimidazol-1-yl)-acetamide differed in the various strains used.  相似文献   

16.
Suttle JC 《Plant physiology》1991,96(3):875-880
Basipetal transport of [14C]IAA in hypocotyl segments isolated from various regions of etiolated Helianthus annuus L. cv NK 265 seedlings declines with increasing physiological age. This decline was the result of a reduction in both transport capacity and apparent velocity. Net IAA uptake was greater and the abilities of auxin transport inhibitors to stimulate net IAA uptake were reduced in older tissues. Net IAA accumulation by microsomal vesicles exhibited a similar behavior with respect to age. Specific binding of [3H]N-1-naphthylphthalamic acid (NPA) to microsomes prepared from young and older hypocotyl regions was saturable and consistent with a single class of binding sites. The apparent affinity constants for NPA binding in microsomes prepared from young versus older tissues were 6.4 and 10.8 nanomolar, respectively, and the binding site densities for young versus old tissues were 7.44 and 3.29 picomoles/milligram protein, respectively. Specific binding of [3H]NPA in microsomes prepared from both tissues displayed similar sensitivities toward unlabeled flurenol and exhibited only slight differences in sensitivity toward 2,3,5-triiodobenzoic acid. These results demonstrate that the progressive loss of basipetal IAA transport capacity in etiolated Helianthus hypocotyls with advancing age is associated with substantial alterations in the phytotropin-sensitive, IAA efflux system and they suggest that these changes are, at least partially, responsible for the observed reduction of polar IAA transport with advancing tissue age.  相似文献   

17.
The aim of this work was to study morphological and biochemical aspects during zygotic embryogenesis in O. catharinensis, by measuring changes in the endogenous concentrations of proteins, amino acids, polyamines (PAs), indole-3-acetic acid (IAA) and abscisic acid (ABA). Buffer-soluble and insoluble protein contents were determined by spectrometry, and amino acids, PAs, IAA and ABA concentrations were determined by high performance liquid chromatography. Total amino acid accumulation, predominantly asparagine, occurred when the embryo showed completely developed cotyledons, with posterior reduction in the mature embryo. This decrease in total amino acid concentration in the mature embryo may result from their use in storage␣as well as for LEA protein synthesis. Free putrescine (Put) concentration decreased, while free spermine (Spm) increased during embryo development. This suggest a role for Put in the initial phases of embryogenesis when high rates of cell division occur, while elevated concentration of Spm are essential from the middle to the end of embryo development, when growth is mainly due to cell elongation. An IAA peak in zygotic embryos occurred during initial development, suggesting a link between growth and cellular division as well as with the establishment of bilateral symmetry. ABA concentration declined during initial stages of development then increased at the mature embryo stage, suggesting a possible relationship with dormancy and recalcitrance characteristics. Our results show that changes in the phytohormones (IAA, ABA and PAs) concentrations in combination with amino acids are likely important factors determining the developmental stages of O.␣catharinensis zygotic embryos.  相似文献   

18.
Effect of glyphosate on ethylene production in tobacco callus   总被引:9,自引:0,他引:9       下载免费PDF全文
Lee TT  Dumas T 《Plant physiology》1983,73(3):855-857
Glyphosate (N-phosphonomethylglycine) caused a significant decrease or a slight increase in ethylene production in tobacco callus (Nicotiana tabacum L.) depending on the concentration of indole-3-acetic acid (IAA) present in the medium. IAA stimulated ethylene production, but a pretreatment with glyphosate greatly reduced the IAA-induced ethylene production. Inasmuch as glyphosate treatment promoted the metabolism of IAA, the decrease in ethylene production induced by glyphosate is attributed to the rapid loss of free IAA in the treated tissue.  相似文献   

19.
A comparison study was conducted on the effect of glyphosate (N-[phosphonomethyl]glycine) on indole-3-[2-14C]acetic acid (IAA) metabolism, ethylene production, and growth of 7-day-old seedlings of different plants. The plants tested were American germander (Teucrium canadense L.), soybean (Glycine max L. Merr.), pea (Pisum sativum L. cv. Alaska and Little marvel), mungbean (Vigna radiata L.), and buckwheat (Fagopyrum esculentum Moench). A spray with 2 mM glyphosate affected IAA metabolism to a varied degree. The induced increase of IAA metabolism was greater in buckwheat, Alaska pea, and mungbean than soybean, Little marvel pea, and American germander. The increased IAA metabolism was correlated with the inhibition of growth and with the decrease of ethylene production. The natural rate of IAA metabolism was markedly different among the plant species and cultivars tested and appeared to be related to the sensitivity of the plants to glyphosate. American germander and Little marvel pea with high rates of IAA metabolism were more tolerant to glyphosate than buckwheat and Alaska pea, which had low rates of IAA metabolism. Plants with a high natural rate of IAA metabolism were probably less dependent on IAA and thus less susceptible to glyphosate.  相似文献   

20.
Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the α-(1→4) glucosidic type. The glucan also contains α-(1→6)-linked glucosyl units and 4,6-disubstituted α-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced Mr of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号