首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible roles of oxygen and carbon dioxide treatments inthe presence or absence of ethylene on tuber dormancy releasein potato (Solanum tuberosumL.) were examined. Using two gascompositions (I: 60% CO2–20% O2–20% N2and II: 20%CO2–40% O2–40% N2), the phase of tuber dormancyand previous storage temperature were demonstrated to be importantparameters for dormancy release by these gas mixtures. Gas Icaused decreased abscisic acid (ABA) levels within 24 h regardlessof previous storage temperature, although this effect was reversible.Exogenous C2H4, an effective dormancy release agent, also causeddecreased ABA levels within 24 h. It also enhanced dormancyrelease and further promoted ABA losses by gas I. Gas II treatmentled to slight reductions in ABA levels that were further decreasedby C2H4. Sprout length was modelled successfully by multipleregression analysis in terms of glucose and ABA levels withinthe apical eye tissues of Russet Burbank tubers immediatelyafter, and regardless of, previous gas treatments or storagetemperatures. Solanum tuberosum,potato, abscisic acid, ethylene, carbon dioxide, oxygen, dormancy.  相似文献   

2.
The appearance and growth of individual leaves were examinedin crops of potato (Solanum tuberosum L.) grown either fullyirrigated or droughted from plant emergence. The rate of appearance of leaves was increased and the durationof growth decreased in leaves of the droughted crop in 1986but not in 1987. In droughted crops, leaf growth rate was correlatedwith afternoon measurements of leaf water potential (1) andturgor (P), being reduced in comparison with that in irrigatedcrops when 1 and P were less than –0.28 and 0.5 MPa respectively.Leaf growth was highly correlated to soil moisture deficit (SMD)and declined rapidly when the SMD was greater than 16 mm. Key words: Solanum tuberosum, leaf growth, leaf appearance, drought, irrigation  相似文献   

3.
The effects of leaf age and of shading on photosynthetic rateand on other leaf parameters of potato (Solanum tuberosum L.)were studied using a portable gas exchange system. A rapid decreasein the rate of photosynthesis during leaf senescence was observed.This was accompanied by an increase in stomatal resistance,and as a result a fairly constant level of sub-stomatal CO2concentration was maintained at all leaf ages. The reductionin the photosynthetic rate in older leaves was therefore assumedto be essentially mesophyllic in origin, whereas the stomatalresponse was probably secondary. Canopy density significantly affected the rate of photosyntheticreduction with leaf age. Leaves maintained under high radiationintensities manifested a slower decline in their photosyntheticrate, especially in the early stages of their senescence, thanleaves kept under shade conditions. The latter leaves were foundto be more adapted to low radiation intensities, as indicatedby changes in their chlorophyll a:b ratio and specific leafweight Solanum tuberosum L, potato, photosynthetic rate, mesophyll, stomata, leaf age, radiation intensity, chlorophyll a:b ratio  相似文献   

4.
A simple apparatus is described for generating pressurized throughflowventilation in plant tissue culture vessels. No pumps or gas-cylindersare required and the flow is driven by humidity-induced diffusionacross microporous membranes. In the experiments described,pressurized flows of sterile humidified air were supplied atrates of up to 1 ml min-1and these had beneficial effects onleaf survival and production inAnnona cuttings and on calloidform in coconut. Ethylene (ethene) was removed more quicklyfrom the pressure-flow ventilated culture vessels (t 50, 0.4–0.7h) than from those aerated by diffusion through conventionalpolypropylene membranes (t 50, 1.6–2.4 h). InAnnona cuttings leaf production was greatly increased andethylene-induced leaf fall considerably delayed when culturedwith the forced as opposed to diffusion-based ventilation ofthe vessels. With throughflow ventilation, coconut calloid was more convolutedthan under wholly diffusive aeration and had a smooth distinctepidermal surface and clearly defined sub-epidermal meristematicnodules. It resembled freshly initiated calloid from which regenerationof plantlets via somatic embryogenesis can be obtained. Underwholly diffusive aeration, calloid developed a rough, relativelyundifferentiated surface, more haustorial (i.e. cotyledonary)in appearance, and characteristic of cultures where regenerationpotential has been lost. It is suggested that other benefits of the pressurized throughflowventilation may be the removal of volatiles such as ethanoland acetaldehyde, the removal of excess carbon dioxide at nightand its improved supply during the day, and sustained oxygenconcentrations at levels close to atmospheric both night andday. Abscission; callus; ethylene; explants; tissue-culture; growth; ventilation  相似文献   

5.
MENZEL  C. M. 《Annals of botany》1983,52(5):697-702
Warm temperatures (35°C day/30°C night) which inhibittuberization in potato (Solanum tuberosum L., cv. Sebago) increasedgibberellin activity in crude extracts from buds, but not frommature leaves, as determined by the lettuce hypocotyl bioassay.Changes in the growth of tubers and stolons indicate the occurrenceof basipetal movement of GA3 applied to the terminal bud ora mature leaf. 14C labelling from GA3 or mevalonic acid injectedjust below the terminal bud was recovered in the lower shoot,stolons and tubers, but the amount transported was greater atcool temperatures (20/15°C). It is concluded that high temperaturespromote the synthesis of gibberellin in the buds rather thantransport to the stolons. Solanum tuberosum L., potato, tuberization, gibberellin  相似文献   

6.
MARSHALL  B.; VOS  J. 《Annals of botany》1991,68(1):33-39
Measurements of the rate of light-saturated photosynthesis (Pmax)were made on terminal leaflets of potato plants growing in cropssupplied with 0, 3, 6, 12, 24 and 36 g N m–2. Measurementswere made between 100 and 154 d after planting. Two types ofleaf were selected—the fourth leaf on the second-levelbranch (L4, B1) and the youngest terminal leaflet that was measurable(LYM). Later, the total nitrogen concentration of each leaflet(NL) was measured. A linear regression between Pmax and NL,common to both leaf positions, explained 68.5% of the totalvariation. With L4, B1 leaves there was a significant improvementin the proportion of variation explained when regressions withseparate intercepts and a common slope were fitted to individualfertilizer treatments. These results suggest that an increasingproportion of leaf nitrogen was not associated with the performanceof the photosynthetic system with increasing nitrogen supply.This separation between nitrogen treatments was not as clearfor LYM leaves. Stomatal conductance to transfer of water vapourwas neither influenced by leaf position nor directly by nitrogensupply. Rather conductance declined in parallel with the declinein photosynthetic capacity. Solanum tuberosum, potato, nitrogen, photosynthesis, stomatal conductance, leaf  相似文献   

7.
BUNCE  JAMES A. 《Annals of botany》1990,65(6):637-642
Dark carbon dioxide efflux rates of recently fully expandedleaves and whole plants of Amaranthus hypochondriacus L., Glycinemax (L.) Merr., and Lycopersicon esculentum Mill. grown in controlledenvironments at 35 and 70 Pa carbon dioxide pressure were measuredat 35 and 70 Pa carbon dioxide pressure. Harvest data and whole-plant24-h carbon dioxide exchange were used to determine relativegrowth rates, net assimilation rates, leaf area ratios, andthe ratio of respiration to photosynthesis under the growthconditions. Biomass at a given time after planting was greaterat the higher carbon dioxide pressure in G. max and L. esculentum,but not the C4 species, A. hypochondriacus. Relative growthrates for the same range of masses were not different betweencarbon dioxide treatments in the two C3 species, because highernet assimilation rates at the higher carbon dioxide pressurewere offset by lower leaf area ratios. Whole plant carbon dioxideefflux rates per unit of mass were lower in plants grown andmeasured at the higher carbon dioxide pressure in both G. maxand L. esculentum, and were also smaller in relation to daytimenet carbon dioxide influx. Short-term responses of respirationrate to carbon dioxide pressure were found in all species, withcarbon dioxide efflux rates of leaves and whole plants lowerwhen measured at higher carbon dioxide pressure in almost allcases. Amaranthus hypochondriacus L., Glycine max L. Merr., Lycopersicon esculentum Mill., soybean, tomato, carbon dioxide, respiration, growth  相似文献   

8.
We studied the course of early leaf area expansion and specificleaf area (SLA) in potato (Solanum tuberosum L.) and wheat (Triticumaestivum L.) genotypes and tested whether air temperature explainsdifferences in these courses within different environments.Such knowledge can be used to improve crop growth modelling.The relative rate of leaf area expansion (RL) of potato andwheat decreased with thermal time, but was nearly linear upto a leaf area index (L) of 1.0. TheRL (L < 1; mean: 17.9x 10-3°C-1 d-1) of potato showed an interaction betweengenotype and environment, and varied with year. TheRL (L <1; mean: 7.1 x 10-3°C-1 d-1) of winter wheat was lower thanthat of spring wheat (mean: 10.9 x 10-3°C-1 d-1), and bothvaried with year. SLAof potato increased nearly linearly withthermal time from 5 to 15 m2 kg-1at 50% emergence, to 20 to25 m2 kg-1at 155°Cd, and then decreased slightly. The SLAofboth winter and spring wheat began at 16 to 23 m2 kg-1and inmost cases increased slightly with thermal time. In potato,regression parameters of SLAwith thermal time were affectedby environment (management conditions and year) and genotype;in wheat they were affected by environment (year and site).Treatment effects on RLof potato were not correlated with thoseon SLA , and were only partly correlated for wheat. Thereforewe conclude that the early foliar expansion of potato is associatedwith a strong increase in SLA , and not so for wheat. For bothcrops the course of early leaf area expansion and ofSLA withair temperature is not robust over environments and genotypes.The consequences of these results for modelling are discussed.Copyright 2000 Annals of Botany Company Triticum aestivum, spring wheat, winter wheat, Solanum tuberosum, leaf area expansion, specific leaf area, early growth, genotype, environment, modelling  相似文献   

9.
Gas exchange parameters for the potato (Solanum tuberosum L.,cv. ‘Desiree’) crop were measured under field conditions.Nitrogen nutrition was found to have a positive effect on photosynthesisthroughout the growing season. The gas exchange data and thechlorophyll content in the leaves indicated that this effectwas essentially in the mesophyll. Stomatal resistance increasedas photosynthetic rate decreased, but substomatal CO2 concentration(Ci) was not affected by nitrogen treatments. Long term effects of water deficit on photosynthetic capacitywere also mostly mesophyllic in origin. A reduction in photosyntheticrate was observed after a period of moisture stress and alsoafter relief of drought by irrigation, indicating a limitedcapacity for recovery. A short term afternoon increase in stomatalresistance, associated with lower Ci values, occurred afterlong periods without irrigation. Leaf water potential was affectedby irrigation frequency, but less strongly than the gas exchangeparameters. Mesophyll activity and stomatal behaviour were bothaffected by water stress and by nitrogen deficiency, whereasCi values were not affected in most cases. Solanum tuberosum L, photosynthesis, mesophyll, stomata, irrigation frequency, nitrogen deficiency, chlorophyll, leaf water potential  相似文献   

10.
Stomatal closure can explain the inhibition of net CO2 uptakeby a leaf subjected to a mild drought: the photosynthetic apparatusappears resistant to lack of water. Changes in both the watercontent of leaves maintained in a constant environment and theambient CO2 molar fraction during measurements on well-hydratedleaves lead to similar effects on net CO2 uptake and whole chainelectron transport as estimated by leaf chlorophyll fluorescencemeasurements. In particular, it is shown that photosystem II(PSII) functioning and its regulation are not qualitativelychanged during desiccation and that the variations in PSII photochemistrycan simply be understood by changes in substrate availabilityin this condition. Moreover, an analysis of the literature showsthat when inhibition of net CO2 uptake by C3 leaves under drought(Phaseolus vulgaris L., Helianthus annus L. and Solanum tuberosumL.) was lower than 80 %, elevated CO2 completely restored thephotosynthetic capacity. The CO2 molar fraction in the chloroplastsdeclines as stomata close in drying leaves. As a consequence,in C3 plants, ribulose-1,5-bisphosphate oxygenation increasesand becomes the main sink for photosynthetic electrons. Dependingon the prevailing photon flux density, the O2 uptake throughphotorespiratory activity can entirely replace carbon dioxideas an electron acceptor, or not. The rate of the Mehler reactionremains low and unchanged during desiccation. However, droughtcould also involve CO2-sensitive modification of the photosyntheticmetabolism depending on plant growth conditions and possiblyalso on plant species.  相似文献   

11.
Second growth is an important physiological disorder of thepotato (Solanum tuberosum L.) plant. A model system to studysecond growth was developed using one-leaf cuttings. Photoperiod,temperature, decapitation and leaf removal treatments were carriedout on the plants from which the cuttings were taken and onthe cuttings themselves. Tuberized, one-leaf cuttings takenfrom moderately-induced plants and exposed to 35 °C afterleaf removal showed 95% second growth within 10 d after treatmentinitiation. Conditions that promoted second growth also reducedstarch and dry-matter content, even in tubers that did not developsecond growth. Cuttings, second growth, potato, Solanum tuberosum L, cv, Bintje, Solanum tuberosum L. cv., Désirée, Solanum tuberosum L. cv., Russet Burbank, tuberization, starch content, dry-matter, heat, photoperiod, decapitation, leaf removal  相似文献   

12.
Dihaploid Solanum tuberosum and diploid S. microdontum plantswere grown in soil and hydroponics under glasshouse and growthroom conditions. A high light intensity was necessary for flowerinduction in both species and the dihaploid flowered only whengrown in hydroponics. Premature berry abscission was retardedby tuber removal and prevented by the addition of indole aceticacid to the nutrient solution. Seeds from prematurely abscisedberries germinated poorly in soil, but germinated almost aswell as those seeds from indole acetic acid-treated plants whenplaced on Murashige and Skoog (1962) based culture medium. Thehybrid plants were intermediate in morphology, compared to theparents, possessed heterotic vigour and were male fertile. Germinatinghybrid seeds on a colchicine-containing medium led to poorlygrowing plants with ploidy chimeras. Hybrid plant ploidy levelswere doubled by regenerating plants from stem/leaf explantson the tuber disc regeneration medium of Jarret et al. (1980). Key words: Solanum tuberosum, S. microdontum, sexual hybridization, hydroponic culture, tissue culture  相似文献   

13.
Effect of Ethylene and Culture Environment on Rice Callus Proliferation   总被引:1,自引:0,他引:1  
Modifications to the gaseous envelope by callus during culturein Petri dishes were shown to reduce growth and promote necrosisof several rice (Oryza sativa L.) cultivars. Incubatingcallusunder a continuous flow of gas mixtures of known compositionsuggested that the inhibition of growth was caused by the accumulationof ethylene, the depletion of oxygen and, to a lesser extent,the accumulation of carbon dioxide. In order to evaluate theimportance of ethylene accumulation aminoethoxyvinylglycine(AVG), 1-aminocyclopropane-l-carboxylic acid (ACC and silvernitrate (AgNO3), were added to the nutrient medium and ethylenemeasurements performed during callus culture. Ethylene restrictedcallus growth particularly under high (35 °C) as comparedto moderate (25 °C) temperatures and under illuminated ascompared to darkened incubation. Under illuminated incubationat 25 °C AVG (5 mmol m–3) and AgNO°(50 mmol m–3)significantly improvedcallus growth (100 and 60% respectively)while ACC (200 mmol m–3) significantly decreased growth(40%). AVG and AgNO3 were less effective under dark incubationat 25 °C where ethylene production was lower. Furthermore,callus growth was significantly better in large as comparedto small culture vessels since the ethylene concentration wasdiluted and more oxygen was available for respiration. Bettercontrol of ethylene and increased oxygen availability couldbe a way ofproducing healthy callus for the formation of embryogenictissues of otherwise recalcitrant cultivars of rice (e.g. IndicaIR42) and may be a way of improving manipulation of other cerealspecies. Key words: 1-Aminocyclopropane-1-carboxylic acid, aminoethoxyvinylglycine, callus, ethylene, Oryza sativa, silver nitrate  相似文献   

14.
The gaseous composition is an important factor affecting the performance of plant cell cultures. Gaseous metabolites, especially O2, CO2 and C2H4, play important roles in cell physiology. Forced aeration in bioreactors usually results in poor cell growth and secondary metabolite production. In this work, the effects of gaseous metabolites on cell growth, secondary metabolite formation as well as PPO activity were investigated with respect to Stizolobium hassjoo cell culture producing l-DOPA (3,4-dihydroxyphenylalanine). A device allowing the control of the partial pressures of gaseous metabolites in shake flasks was designed. In addition, a recirculating gas system with a PO2 controller was designed for a bioreactor. This device could maintain constant PO2 and PCO2 in the bioreactor headspace. The results showed that the highest l-DOPA content was attained at PO2=0.30 atm. Higher PO2 values retarded cell growth and increased the pH of the culture broth. High PO2 also enhanced the formation of ethylene and inhibited l-DOPA formation. Carbon dioxide concentrations lower than 5% enhanced cell growth and l-DOPA formation. Cell growth was retarded by 0.3 ppm of ethylene in 2~5 carbon dioxide. Oxygen concentration and D.O. in the broth could be controlled at constant levels in the recirculating culture system. Enrichment of PO2 up to 0.3 atm during the later stage of cultivation facilitated l-DOPA formation. The interaction among the gaseous metabolites and their influences on cell metabolism and l-DOPA formation were elucidated. This information will facilitate the rational operation of plant cell culture systems producing secondary metabolites.  相似文献   

15.
Intercellular deformations, caused by increasing levels of compressionapplied by a pressure chamber to an organ covered with a plasticsealant and evaluated according to the internal atmosphere removalrate, were observed in carrots (Daucus carota L. sativa), potatoes(Solanum tuberosum L.) and sweet-potatoes (Ipomea batatas L.Lam). The maximum internal gas volume removed in these kineticassays was close to the intercellular air volume (Vg) measuredby the pycnometric method. Presumably a compression larger thanthe average organ turgor was required to remove all Vg and abovethis point the cells should become completely flattened againsteach other. The intercellular deformation caused by a compressingload, observed by constant pressure volumetry, induced a reductionin the endogenous O2 concentration at the stressed area, accordingto polarographic measurements. Cellular deformations and eventualVg flooding caused by water movement from the symplasm to theapoplasm of externally compressed organs were distinct fromthe usual pressure chamber assays, where all cells are exposedto homogeneous gas pressurization, without the development offorces to cause large cellular deformation and intercellularflooding. These gas transport restrictions were suggested aspotential causes for post harvest deterioration in fragile commoditiessubjected to compression.Copyright 1995, 1999 Academic Press Carrot, compression, Daucus carota, gas volumetry, Ipomea batatas, oxygen, porosity, potato, pressure chamber, Solanum tuberosum, stress, sweet-potato, turgor, suction  相似文献   

16.
Intact tubers of potato (Solanum tuberosum L. cv. Irish Cobblerand an interspecific hybrid between S. tuberosum and S. demissumcv. Rishiri) contain a very low activity of 3-hydroxy-3-methylglutaryl(HMG)-CoA reductase. The activity increased first in responseto slicing, and again in response to additional treatments suchas inoculation with an incompatible race of Phytophthora infestans,application of a hyphal wall component of the fungus or HgCl2solution, and then decreased. Both the first and the secondincreases in activity in response to slicing and additionaltreatment with a hyphal wall component to elicit phytoalexinproduction were inhibited by blasticidin S. Properties of HMG-CoAreductase induced by slicing and by additional treatment withHgCl2 or fungal inoculation were investigated. 2 Present address: Faculty of Home Economics, Nagoya Women'sUniversity, Shioji-cho, Mizuho, Nagoya 467, Japan.  相似文献   

17.
Leaf resistances of 14 cultivated potato genotypes (Solanumspp) and three tuber-bearing wild Solanum species were comparedwhen plants were grown under water stress at two tropical sitesFactors investigated were diurnal changes in leaf resistance,the effect of plant age, transient drought versus well-wateredconditions of potted and field-grown plants These measurementswere carried out in order to determine the stomatal behaviourof tuber-bearing genotypes and species Significant genotypic differences in leaf resistances were notedwithin the cultivated genotypes All genotypes had higher resistanceswhen water-stressed, but LT-7 appeared to have the lowest leafresistances Genetic differences in stomatal behaviour of tuber-bearingSolanum species were confirmed Abaxial stomatal resistancesof water-stressed plants of the species ranged between 1 74and 13 8 s cm–1 Stomata of S chacoense were less affectedby drought (three-fold) than S tuberosum (four-fold) The greatesteffect was on S jungasense (five-fold) and on S raphanifoliumThese data show that stomata behaviour among tuber-bearing Solanumspecies is sufficiently different to warrant investigationsof drought-resistance in potato species under dry hot conditions Solanum tuberosum L., Solanum raphanifolium, Solanum chacoense, Solanum jungasense, leaf resistance  相似文献   

18.
VOS  J.; GROENWOLD  J. 《Annals of botany》1988,62(4):363-371
Potatoes (Solanum tuberosum L.) were grown in containers undera rain shelter for measurement of leaf water relations. Leafwater potentials (  相似文献   

19.
Plants respond to changes in atmospheric carbon dioxide. Toherbivores, the decreased leaf protein contents and increasedC/N ratios common to all leaves under elevated atmospheric carbondioxide imply a reduction in food quality. In addition to thesefine-scale adjustments, the abundance of C3 and C4 plants (particularlygrasses) are affected by atmospheric carbon dioxide. C4 grassescurrently predominate over C3 grasses in warmer climates andtheir distributions expand as atmospheric carbon dioxide levelsdecreased during glacial periods. C4 grasses are a less nutritiousfood resource than C3 grasses both in terms of reduced proteincontent and increased C/N ratios. There is an indication thatas C4-dominated ecosystems expanded 6–8 Ma b.p., therewere significant species-level changes in mammalian grazers.Today there is evidence that mammalian herbivores differ intheir preference for C3 versus C4 food resources, although thefactors contributing to these patterns are not clear. Elevatedcarbon dioxide levels will likely alter food quality to grazersboth in terms of fine-scale (protein content, C/N ratio) andcoarse-scale (C3 versus C4) changes.  相似文献   

20.
Bunce  James A. 《Annals of botany》2001,87(4):463-468
Predicting responses of plant and global carbon balance to theincreasing concentration of carbon dioxide in the atmosphererequires an understanding of the response of plant respirationto carbon dioxide concentration ([CO2]). Direct effects of thecarbon dioxide concentration at which rates of respiration ofplant tissue are measured are quite variable and their effectsremain controversial. One possible source of variation in responsivenessis the energy status of the tissue, which could influence thecontrol coefficients of enzymes, such as cytochrome-c oxidase,whose activity is sensitive to [CO2]. In this study we comparedresponses of respiration rate to [CO2] over the range of 60to 1000 µmol mol-1in fully expanded leaves of four C3andfour C4herbaceous species. Responses were measured near themiddle of the normal 10 h dark period, and also after another24 h of darkness. On average, rates of respiration were reducedabout 70% by the prolonged dark period, and leaf dry mass perunit area decreased about 30%. In all species studied, the relativedecrease in respiration rate with increasing [CO2] was largerafter prolonged darkness. In the C3species, rates measured at1000 µmol mol-1CO2averaged 0.89 of those measured at 60µmol mol-1in the middle of the normal dark period, and0.70-times when measured after prolonged darkness. In the C4species,rates measured at 1000 µmol mol-1CO2averaged 0.79 of thoseat 60 µmol mol-1CO2in the middle of the normal dark period,and 0.51-times when measured after prolonged darkness. In threeof the C3species and one of the C4species, the decrease in theabsolute respiration rate between 60 and 1000 µmol mol-1CO2wasessentially the same in the middle of the normal night periodand after prolonged darkness. In the other species, the decreasein the absolute rate of respiration with increase in [CO2] wassubstantially less after prolonged darkness than in the middleof the normal night period. These results indicated that increasingthe [CO2] at the time of measurement decreased respiration inall species examined, and that this effect was relatively largerin tissues in which the respiration rate was substrate-limited.The larger relative effect of [CO2] on respiration in tissuesafter prolonged darkness is evidence against a controlling roleof cytochrome-c oxidase in the direct effects of [CO2] on respiration.Copyright 2001 Annals of Botany Company Carbon dioxide, respiration, Abutilon theophrasti(L.), Amaranthus retroflexus(L.),Amaranthus hypochondriacus (L.), Datura stramonium(L.), Helianthus annuus(L.), Solanum melongena(L.), Sorghum bicolor(L. Moench), Zea mays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号