首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in neuroserpin and alpha1-antitrypsin cause these proteins to form ordered polymers that are retained within the endoplasmic reticulum of neurones and hepatocytes, respectively. The resulting inclusions underlie the dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) and Z alpha1-antitrypsin-associated cirrhosis. Polymers form by a sequential linkage between the reactive centre loop of one molecule and beta-sheet A of another, and strategies that block polymer formation are likely to be successful in treating the associated disease. We show here that glycerol, the sugar alcohol erythritol, the disaccharide trehalose and its breakdown product glucose reduce the rate of polymerization of wild-type neuroserpin and the Ser49Pro mutant that causes dementia. They also attenuate the polymerization of the Z variant of alpha1-antitrypsin. The effect on polymerization was apparent even when these agents had been removed from the buffer. None of these agents had any detectable effect on the structure or inhibitory activity of neuroserpin or alpha1-antitrypsin. These data demonstrate that sugar and alcohol molecules can reduce the polymerization of serpin mutants that cause disease, possibly by binding to and stabilizing beta-sheet A.  相似文献   

2.
The dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) is caused by the accumulation of mutant neuroserpin within neurons (Davis, R. L., Shrimpton, A. E., Holohan, P. D., Bradshaw, C., Feiglin, D., Sonderegger, P., Kinter, J., Becker, L. M., Lacbawan, F., Krasnewich, D., Muenke, M., Lawrence, D. A., Yerby, M. S., Shaw, C.-M., Gooptu, B., Elliott, P. R., Finch, J. T., Carrell, R. W., and Lomas, D. A. (1999) Nature 401, 376-379), but little is known about the trafficking of wild type and mutant neuroserpins. We have established a cell model to study the processing of wild type neuroserpin and the Syracuse (S49P) and Portland (S52R) mutants that cause FENIB. Here we show that Syracuse and Portland neuroserpin are retained soon after their synthesis in the endoplasmic reticulum and that the limiting step in their processing is the transport to the Golgi complex. This is in contrast to the wild type protein, which is secreted into the culture medium. Mutant neuroserpin is retained within the endoplasmic reticulum as polymers, similar to those isolated from the intraneuronal inclusions in the brains of individuals with FENIB. Remarkably, the Portland mutant showed faster accumulation and slower secretion compared with the Syracuse mutant, in keeping with the more severe clinical phenotype found in patients with the Portland variant of neuroserpin. Both mutant and wild type neuroserpin were partially degraded by proteasomes. Taken together, our results provide further understanding of how cells handle defective but ordered mutant proteins and provide strong support for a common mechanism of disease caused by mutants of the serine protease inhibitor superfamily.  相似文献   

3.
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is an autosomal dominant dementia that is characterized by intraneuronal inclusions of mutant neuroserpin. We report here the expression, purification, and characterization of wild-type neuroserpin and neuroserpin containing the S49P mutation that causes FENIB. Wild-type neuroserpin formed SDS-stable complexes with tPA with an association rate constant and K(i) of 1.2 x 10(4) m(-1) s(-1) and 5.8 nm, respectively. In contrast, S49P neuroserpin formed unstable complexes with an association rate constant and K(i) of 0.3 x 10(4) m(-1) s(-1) and 533.3 nm, respectively. An assessment by circular dichroism showed that S49P neuroserpin had a lower melting temperature than wild-type protein (49.9 and 56.6 degrees C, respectively) and more readily formed loop-sheet polymers under physiological conditions. Neither the wild-type nor S49P neuroserpin accepted the P7-P2 alpha(1)-anti-trypsin or P14-P3 antithrombin-reactive loop peptides that have been shown to block polymer formation in other members of the serpin superfamily. Taken together, these data demonstrate that S49P neuroserpin is a poor proteinase inhibitor and readily forms loop-sheet polymers. These findings provide strong support for the role of neuroserpin polymerization in the formation of the intraneuronal inclusions that are characteristic of FENIB.  相似文献   

4.
The serpinopathies result from conformational transitions in members of the serine proteinase inhibitor superfamily with aberrant tissue deposition or loss of function. They are typified by mutants of neuroserpin that are retained within the endoplasmic reticulum of neurons as ordered polymers in association with dementia. We show here that the S49P mutant of neuroserpin that causes the dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) forms a latent species in vitro and in vivo in addition to the formation of polymers. Latent neuroserpin is thermostable and inactive as a proteinase inhibitor, but activity can be restored by refolding. Strikingly, latent S49P neuroserpin is unlike any other latent serine proteinase inhibitor (serpin) in that it spontaneously forms polymers under physiological conditions. These data provide an alternative method for the inactivation of mutant neuroserpin as a proteinase inhibitor in FENIB and demonstrate a second pathway for the formation of intracellular polymers in association with disease.  相似文献   

5.
In this study, we report the X-ray crystal structure of an N-terminally truncated variant of the bacterial serpin, tengpin (tengpinΔ42). Our data reveal that tengpinΔ42 adopts a variation of the latent conformation in which the reactive center loop is hyperinserted into the A β-sheet and removed from the vicinity of the C-sheet. This conformational change leaves the C β-sheet completely exposed and permits antiparallel edge-strand interactions between the exposed portion of the reactive center loop of one molecule and strand s2C of the C β-sheet of the neighboring molecule in the crystal lattice. Our structural data thus reveal that tengpinΔ42 forms a loop C-sheet polymer in the crystal lattice. In vivo serpins have a propensity to misfold and form long-chain polymers, a process that underlies serpinopathies such as emphysema, thrombosis and dementia. Native serpins are thought to polymerize via a loop A-sheet mechanism. However, studies on plasminogen activator inhibitor 1 and the S49P variant of human neuroserpin reveal that the latent form of these molecules can also polymerize. Polymerization of latent neuroserpin may be important for the development of familial encephalopathy with neuroserpin inclusion bodies. Our structural data provide a possible mechanism for polymerization by latent serpins.  相似文献   

6.
Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.  相似文献   

7.
The inhibitors that belong to the serpin family are suicide inhibitors that control the major proteolytic cascades in eucaryotes. Recent data suggest that serpin inhibition involves reactive centre cleavage followed by loop insertion, whereby the covalently linked protease is translocated away from the initial docking site. However under certain circumstances, serpins can also be cleaved like a substrate by target proteases. In this report we have studied the conformation of the reactive centre of plasminogen activator inhibitor type 1 (PAI-1) mutants with inhibitory and substrate properties. The polarized steady-state and time-resolved fluorescence anisotropies were determined for BODIPY(R) probes attached to the P1' and P3 positions of the substrate and active forms of PAI-1. The fluorescence data suggest an extended orientational freedom of the probe in the reactive centre of the substrate form as compared to the active form, revealing that the conformation of the reactive centres differ. The intramolecular distance between the P1' and P3 residues in reactive centre cleaved inhibitory and substrate mutants of PAI-1, were determined by using the donor-donor energy migration (DDEM) method. The distances found were 57+/-4 A and 63+/-3 A, respectively, which is comparable to the distance obtained between the same residues when PAI-1 is in complex with urokinase-type plasminogen activator (uPA). Following reactive centre cleavage, our data suggest that the core of the inhibitory and substrate forms possesses an inherited ability of fully inserting the reactive centre loop into beta-sheet A. In the inhibitory forms of PAI-1 forming serpin-protease complexes, this ability leads to a translocation of the cognate protease from one pole of the inhibitor to the opposite one.  相似文献   

8.
Human neuroserpin (hNS) is a protein serine protease inhibitor expressed mainly in the nervous system, where it plays key roles in neural development and plasticity by primarily targeting tissue plasminogen activator (tPA). Four hNS mutations are associated to a form of autosomal dominant dementia, known as familial encephalopathy with neuroserpin inclusion bodies. The medical interest in and the lack of structural information on hNS prompted us to study the crystal structure of native and cleaved hNS, reported here at 3.15 and 1.85 Å resolution, respectively. In the light of the three-dimensional structures, we focus on the hNS reactive centre loop in its intact and cleaved conformations relative to the current serpin polymerization models and discuss the protein sites hosting neurodegenerative mutations. On the basis of homologous serpin structures, we suggest the location of a protein surface site that may stabilize the hNS native (metastable) form. In parallel, we present the results of kinetic studies on hNS inhibition of tPA. Our data analysis stresses the instability of the hNS-tPA complex with a dissociation half-life of minutes compared to a half-life of weeks observed for other serpin-cognate protease complexes.  相似文献   

9.
Amyloid‐beta plaques are a pathological hallmark of Alzheimer’s disease. Several proteases are known to cleave/remove amyloid‐beta, including plasmin, the product of tissue plasminogen activator cleavage of the pro‐enzyme plasminogen. Although plasmin levels are lower in Alzheimer brain, there has been little analysis of the plasminogen activator/plasmin system in the brains of Alzheimer patients. In this study, zymography, immunocapture, and ELISAs were utilized to show that tissue plasminogen activator activity in frontal cortex tissue of Alzheimer patients is dramatically reduced compared with age‐matched controls, while tissue plasminogen activator and plasminogen protein levels are unchanged; suggesting that plasminogen activator activity is inhibited in the Alzheimer brain. Analysis of endogenous plasminogen activator inhibitors shows that while plasminogen activator inhibitor‐1 and protease nexin‐1 levels are unchanged, the neuroserpin levels are significantly elevated in brains of Alzheimer patients. Furthermore, elevated amounts of tissue plasminogen activator‐neuroserpin complexes are seen in the Alzheimer brain, and immunohistochemical studies demonstrate that both tissue plasminogen activator and neuroserpin are associated with amyloid‐beta plaques in Alzheimer brain tissue. Thus, neuroserpin inhibition of tissue plasminogen activator activity leads to reduced plasmin and may be responsible for reduced clearance of amyloid‐beta in the Alzheimer disease brain. Furthermore, decreased tissue plasminogen activator activity in the Alzheimer brain may directly influence synaptic activity and impair cognitive function.  相似文献   

10.
The crystal structure of a constitutively active multiple site mutant of plasminogen activator inhibitor 1 (PAI-1) was determined and refined at a resolution of 2.7 A.The present structure comprises a dimer of two crystallographically independent PAI-1 molecules that pack by association of the residues P6 to P3 of the reactive centre loop of one molecule (A) with the edge of the main beta-sheet A of the other molecule (B).Thus, the reactive centre loop is ordered for molecule A by crystal packing forces, while for molecule B it is unconstrained by crystal packing contacts and is disordered.The overall structure of active PAI-1 is similar to the structures of other active inhibitory serpins exhibiting as the major secondary structural feature a five-stranded beta-sheet A and an intact proteinase-binding loop protruding from the one end of the elongated molecule. No preinsertion of the reactive centre loop is observed in this structure.A comparison of the present structure with the previously determined crystal structures of PAI-1 in its alternative conformations reveals that, upon cleavage of an intact form of PAI-1 or formation of latent PAI-1, the well-characterised rearrangements of the serpin secondary structural elements are accompanied by dramatic and partly unexpected conformational changes of helical and loop structures proximal to beta-sheet A.The present structure explains the stabilising effects of the mutated residues, reveals the structural cause for the observed spectroscopic differences between active and latent PAI-1, and provides new insights into possible mechanisms of stabilisation by its natural binding partner, vitronectin.  相似文献   

11.
Amyloid-beta (Aβ) plaques are a hallmark of Alzheimer's disease. Several proteases including plasmin are thought to promote proteolytic cleavage and clearance of Aβ from brain. The activity of both plasmin and tissue plasminogen activator are reduced in Alzheimer's disease brain, while the tissue plasminogen activator inhibitor neuroserpin is up-regulated. Here, the relationship of tissue plasminogen activator and neuroserpin to Aβ levels is explored in mouse models. Aβ(1-42) peptide injected into the frontal cortex of tissue plasminogen activator knockout mice is slow to disappear compared to wildtype mice, whereas neuroserpin knockout mice show a rapid clearance of Aβ(1-42). The relationship of neuroserpin and tissue plasminogen activator to Aβ plaque formation was studied further by knocking-out neuroserpin in the human amyloid precursor protein-J20 transgenic mouse. Compared to the J20-transgenic mouse, the neuroserpin-deficient J20-transgenic mice have a dramatic reduction of Aβ peptides, fewer and smaller plaques, and more active tissue plasminogen activator associated with plaques. Furthermore, neuroserpin-deficient J20-transgenic mice have near normal performances in the Morris water maze, in contrast to the spatial memory defects seen in J20-transgenic mice. These results support the concept that neuroserpin inhibition of tissue plasminogen activator plays an important role both in the accumulation of brain amyloid plaques and loss of cognitive abilities.  相似文献   

12.
Intraneuronal deposition of aggregated proteins in tauopathies, Parkinson disease, or familial encephalopathy with neuroserpin inclusion bodies (FENIB) leads to impaired protein homeostasis (proteostasis). FENIB represents a conformational dementia, caused by intraneuronal polymerization of mutant variants of the serine protease inhibitor neuroserpin. In contrast to the aggregation process, the kinetic relationship between neuronal proteostasis and aggregation are poorly understood. To address aggregate formation dynamics, we studied FENIB in Caenorhabditis elegans and mice. Point mutations causing FENIB also result in aggregation of the neuroserpin homolog SRP-2 most likely within the ER lumen in worms, recapitulating morphological and biochemical features of the human disease. Intriguingly, we identified conserved protein quality control pathways to modulate protein aggregation both in worms and mice. Specifically, downregulation of the unfolded protein response (UPR) pathways in the worm favors mutant SRP-2 accumulation, while mice overexpressing a polymerizing mutant of neuroserpin undergo transient induction of the UPR in young but not in aged mice. Thus, we find that perturbations of proteostasis through impairment of the heat shock response or altered UPR signaling enhance neuroserpin accumulation in vivo. Moreover, accumulation of neuroserpin polymers in mice is associated with an age-related induction of the UPR suggesting a novel interaction between aging and ER overload. These data suggest that targets aimed at increasing UPR capacity in neurons are valuable tools for therapeutic intervention.  相似文献   

13.
Members of the serine protease inhibitor (serpin) superfamily are found in all branches of life and play an important role in the regulation of enzymes involved in proteolytic cascades. Mutants of the serpins result in a delay in folding, with unstable intermediates being cleared by endoplasmic reticulum-associated degradation. The remaining protein is either fully folded and secreted or retained as ordered polymers within the endoplasmic reticulum of the cell of synthesis. This results in a group of diseases termed the serpinopathies, which are typified by mutations of α(1)-antitrypsin and neuroserpin in association with cirrhosis and the dementia familial encephalopathy with neuroserpin inclusion bodies, respectively. Current evidence strongly suggests that polymers of mutants of α(1)-antitrypsin and neuroserpin are linked by the sequential insertion of the reactive loop of one molecule into β-sheet A of another. The ordered structure of the polymers within the endoplasmic reticulum stimulates nuclear factor-kappa B by a pathway that is independent of the unfolded protein response. This chronic activation of nuclear factor-kappa B may contribute to the cell toxicity associated with mutations of the serpins. We review the pathobiology of the serpinopathies and the development of novel therapeutic strategies for treating the inclusions that cause disease. These include the use of small molecules to block polymerization, stimulation of autophagy to clear inclusions and stem cell technology to correct the underlying molecular defect.  相似文献   

14.
A central feature of the serpin inhibition mechanism is insertion of the reactive center loop into the central beta-sheet (beta-sheet A). This insertion also occurs when the reactive center loop is cleaved without protease inhibition. Using this effect, we have measured the enthalpy (DeltaH) of loop cleavage and insertion for plasminogen activator inhibitor 1 (PAI-1) as -38 kcal/mol. Because loop insertion can be blocked by incorporating a peptide into the central beta-sheet, it was possible to assign -7 kcal/mol to loop cleavage and -31 kcal/mol to loop insertion. These values are lower than values reported for the serpins alpha 1 -proteinase inhibitor and antithrombin of -53 to -63 kcal/mol, respectively, for loop insertion with negligible enthalpy for loop cleavage. A free energy difference of -9 kcal/mol has been reported between the active and spontaneously loop inserted "latent forms" of PAI-1, which is significantly smaller in magnitude than the -31 kcal/mol of enthalpy we measured for loop insertion. Because the enthalpy should relate closely to those regions of PAI-1 that have moved to lower potential energy, a difference distance matrix is presented that identifies regions of PAI-1 that move during loop insertion.  相似文献   

15.
Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (serpin) in which the reactive center loop (RCL) spontaneously inserts into a central beta-sheet, beta-sheet A, resulting in inactive inhibitor. Available x-ray crystallographic studies of PAI-1 in an active conformation relied on the use of stabilizing mutations. Recently it has become evident that these structural models do not adequately explain the behavior of wild-type PAI-1 (wtPAI-1) in solution. To probe the structure of native wtPAI-1, we used three conformationally sensitive ligands: the physiologic cofactor, vitronectin; a monoclonal antibody, 33B8, that binds preferentially to RCL-inserted forms of PAI-1; and RCL-mimicking peptides that insert into beta-sheet A. From patterns of interaction with wtPAI-1 and the stable mutant, 14-1B, we propose a model of the native conformation of wtPAI-1 in which the bottom of the central sheet is closed, whereas the top of the beta-sheet A is open to allow partial insertion of the RCL. Because the incorporation of RCL-mimicking peptides into wtPAI-1 is accelerated by vitronectin, we further propose that vitronectin alters the conformation of the RCL to allow increased accessibility to beta-sheet A, yielding a structural hypothesis that is contradictory to the current structural model of PAI-1 in solution and its interaction with vitronectin.  相似文献   

16.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in beta-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of alpha-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and alpha1-protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and beta-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop-sheet interactions in serpins.  相似文献   

17.
Accumulation and deposition of Aβ is one of the main neuropathological hallmarks of Alzheimer's disease (AD) and impaired Aβ degradation may be one mechanism of accumulation. Plasmin is the key protease of the plasminogen system and can cleave Aβ. Plasmin is activated from plasminogen by tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). The activators are regulated by inhibitors which include plasminogen activator inhibitor-1 (PAI-1) and neuroserpin. Plasmin is also regulated by inhibitors including α2-antiplasmin and α2-macroglobulin. Here, we investigate the mRNA levels of the activators and inhibitors of the plasminogen system and the protein levels of tPA, neuroserpin and α2-antiplasmin in post-mortem AD and control brain tissue. Distribution of the activators and inhibitors in human brain sections was assessed by immunoperoxidase staining. mRNA measurements were made in 20 AD and 20 control brains by real-time PCR. In an expanded cohort of 38 AD and 38 control brains tPA, neuroserpin and α2-antiplasmin protein levels were measured by ELISA. The activators and inhibitors were present mainly in neurons and α2-antiplasmin was also associated with Aβ plaques in AD brain tissue. tPA, uPA, PAI-1 and α2-antiplasmin mRNA were all significantly increased in AD compared to controls, as were tPA and α2-antiplasmin protein, whereas neuroserpin mRNA and protein were significantly reduced. α2-macroglobulin mRNA was not significantly altered in AD. The increases in tPA, uPA, PAI-1 and α2-antiplasmin may counteract each other so that plasmin activity is not significantly altered in AD, but increased tPA may also affect synaptic plasticity, excitotoxic neuronal death and apoptosis.  相似文献   

18.
The protease inhibitor neuroserpin regulates the development of the nervous system and its plasticity in the adult. Neuroserpins carrying the Ser53Pro or Ser56Arg mutation form polymers in neuronal cells. We describe here the structure of wild-type neuroserpin in a cleaved form. The structure provides a basis to understand the role of the mutations in the polymerization process. We propose that these mutations could delay the insertion of the reactive center loop into the central beta-sheet A, an essential step in the inhibition and possibly in the polymerization of neuroserpin.  相似文献   

19.
Conformational diseases such as amyloidosis, Alzheimer's disease, prion diseases, and the serpinopathies are all caused by structural rearrangements within a protein that transform it into a pathological species. These diseases are typified by the Z variant of alpha(1)-antitrypsin (E342K), which causes the retention of protein within hepatocytes as inclusion bodies that are associated with neonatal hepatitis and cirrhosis. The inclusion bodies result from the Z mutation perturbing the conformation of the protein, which facilitates a sequential interaction between the reactive center loop of one molecule and beta-sheet A of a second. Therapies to prevent liver disease must block this reactive loop-beta-sheet polymerization without interfering with other proteins of similar tertiary structure. We have used reactive loop peptides to explore the differences between the pathogenic Z and normal M alpha(1)-antitrypsin. The results show that the reactive loop is likely to be partially inserted into beta-sheet A in Z alpha(1)-antitrypsin. This conformational difference from M alpha(1)-antitrypsin was exploited with a 6-mer reactive loop peptide (FLEAIG) that selectively and stably bound Z alpha(1)-antitrypsin. The importance of this finding is that the peptide prevented the polymerization of Z alpha(1)-antitrypsin and did not significantly anneal to other proteins (such as antithrombin, alpha(1)-antichymotrypsin, and plasminogen activator inhibitor-1) with a similar tertiary structure. These findings provide a lead compound for the development of small molecule inhibitors that can be used to treat patients with Z alpha(1)-antitrypsin deficiency. Furthermore they demonstrate how a conformational disease process can be selectively inhibited with a small peptide.  相似文献   

20.
Plasminogen activator inhibitor 1 (PAI-1) is the main inhibitor of plasminogen activators and plays an important role in many pathophysiological processes. Like other members of the serpin family, PAI-1 has a reactive center consisting of a mobile loop (RCL) with P1 and P1' residues acting as a "bait" for cognate protease. In contrast to the other serpins, PAI-1 loses activity by spontaneous conversion to an inactive latent form. This involves full insertion of the RCL into beta-sheet A. To search for molecular determinants that could be responsible for conversion of PAI-1 to the latent form, we studied the conformation of the RCL in active PAI-1 in solution. Intramolecular distance measurements by donor-donor energy migration and probe quenching methods reveal that the RCL is located much closer to the core of PAI-1 than has been suggested by the recently resolved X-ray structures of stable PAI-1 mutants. Disulfide bonds can be formed in double-cysteine mutants with substitutions at positions P11 or P13 of the RCL and neighboring residues in beta-sheet A. This suggests that the RCL may be preinserted up to residue P13 in active PAI-1, and possibly even to residue P11. We propose that the close proximity of the RCL to the protein core, and the ability of the loop to preinsert into beta-sheet A is a possible reason for PAI-1 being able to convert spontaneously to its latent form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号