共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Isothermal strand-displacement amplification applications for high-throughput genomics 总被引:14,自引:0,他引:14
Detter JC Jett JM Lucas SM Dalin E Arellano AR Wang M Nelson JR Chapman J Lou Y Rokhsar D Hawkins TL Richardson PM 《Genomics》2002,80(6):691-698
Amplification of source DNA is a nearly universal requirement for molecular biology applications. The primary methods currently available to researchers are limited to in vivo amplification in Escherichia coli hosts and the polymerase chain reaction. Rolling-circle DNA replication is a well-known method for synthesis of phage genomes and recently has been applied as rolling circle amplification (RCA) of specific target sequences as well as circular vectors used in cloning. Here, we demonstrate that RCA using random hexamer primers with 29 DNA polymerase can be used for strand-displacement amplification of different vector constructs containing a variety of insert sizes to produce consistently uniform template for end-sequencing reactions. We show this procedure to be especially effective in a high-throughput plasmid production sequencing process. In addition, we demonstrate that whole bacterial genomes can be effectively amplified from cells or small amounts of purified genomic DNA without apparent bias for use in downstream applications, including whole genome shotgun sequencing. 相似文献
3.
Genome-wide high-throughput screens in functional genomics 总被引:5,自引:0,他引:5
The availability of complete genome sequences from many organisms has yielded the ability to perform high-throughput, genome-wide screens of gene function. Within the past year, rapid advances have been made towards this goal in many major model systems, including yeast, worms, flies, and mammals. Yeast genome-wide screens have taken advantage of libraries of deletion strains, but RNA-interference has been used in other organisms to knockdown gene function. Examples of recent large-scale functional genetic screens include drug-target identification in yeast, regulators of fat accumulation in worms, growth and viability in flies, and proteasome-mediated degradation in mammalian cells. Within the next five years, such screens are likely to lead to annotation of function of most genes across multiple organisms. Integration of such data with other genomic approaches will extend our understanding of cellular networks. 相似文献
4.
5.
An innovative, microwell-based platform for single-cell RNA sequencing (RNA-seq) combines cost efficiency, scalability and parallelizability, and will enable many new avenues of biological inquiry.See related Research article: http://dx.doi.org/10.1186/s13059-015-0684-3Over the past several years, it has become increasingly clear that there can be substantial variability in the behaviors of cells once deemed to be identical. This realization has brought about a renewed interest in defining cellular phenotypes and their variation, and in examining how these change under different biological contexts. To achieve this, approaches are needed that can deeply profile individual cells across diverse experimental conditions. Now, by marrying recent advances in molecular biology with microfluidics and microwells, Bose and colleagues present a new platform for achieving this goal [1], opening up exciting new opportunities to explore cells and their heterogeneity. 相似文献
6.
7.
Lee YH Moon IJ Hur B Park JH Han KH Uhm SY Kim YJ Kang KJ Park JW Seu YB Kim YH Park JG 《Nature biotechnology》2005,23(5):591-599
Single-stranded genomic DNA of recombinant M13 phages was tested as an antisense molecule and examined for its usefulness in high-throughput functional genomics. cDNA fragments of various genes (TNF-alpha, c-myc, c-myb, cdk2 and cdk4) were independently cloned into phagemid vectors. Using the life cycle of M13 bacteriophages, large circular (LC)-molecules, antisense to their respective genes, were prepared from the culture supernatant of bacterial transformants. LC-antisense molecules exhibited enhanced stability, target specificity and no need for target-site searches. High-throughput functional genomics was then attempted with an LC-antisense library, which was generated by using a phagemid vector that incorporated a unidirectional subtracted cDNA library derived from liver cancer tissue. We identified 56 genes involved in the growth of these cells. These results indicate that an antisense sequence as a part of single-stranded LC-genomic DNA of recombinant M13 phages exhibits effective antisense activity, and may have potential for high-throughput functional genomics. 相似文献
8.
A report on the 11th Cold Spring Harbor Laboratory/Wellcome Trust conference on Genome Informatics, Cold Spring Harbor Laboratories,
New York, USA, November 2-5, 2011. 相似文献
9.
Goh CS Lan N Douglas SM Wu B Echols N Smith A Milburn D Montelione GT Zhao H Gerstein M 《Journal of molecular biology》2004,336(1):115-130
Structural genomics projects represent major undertakings that will change our understanding of proteins. They generate unique datasets that, for the first time, present a standardized view of proteins in terms of their physical and chemical properties. By analyzing these datasets here, we are able to discover correlations between a protein's characteristics and its progress through each stage of the structural genomics pipeline, from cloning, expression, purification, and ultimately to structural determination. First, we use tree-based analyses (decision trees and random forest algorithms) to discover the most significant protein features that influence a protein's amenability to high-throughput experimentation. Based on this, we identify potential bottlenecks in various stages of the structural genomics process through specialized "pipeline schematics". We find that the properties of a protein that are most significant are: (i.) whether it is conserved across many organisms; (ii). the percentage composition of charged residues; (iii). the occurrence of hydrophobic patches; (iv). the number of binding partners it has; and (v). its length. Conversely, a number of other properties that might have been thought to be important, such as nuclear localization signals, are not significant. Thus, using our tree-based analyses, we are able to identify combinations of features that best differentiate the small group of proteins for which a structure has been determined from all the currently selected targets. This information may prove useful in optimizing high-throughput experimentation. Further information is available from http://mining.nesg.org/. 相似文献
10.
11.
Deciphering the complex molecular dialogue between the maternal tract and embryo is crucial to increasing our understanding of pregnancy failure, infertility problems and in the modulation of embryo development, which has consequences through adulthood. High-throughput genomic technologies have been applied to look for a holistic view of the molecular interactions occurring during this dialogue. Among these technologies, microarrays have been widely used, being one of the most popular tools in maternal-embryo communication. Today, next generation sequencing technologies are dwarfing the capabilities of microarrays. The application of these new technologies has broadened to almost all areas of genomics research, because of their massive sequencing capacity. We review the current status of high-throughput genomic technologies and their application to maternal-embryo communication research. We also survey next generation technologies and their huge potential in many research areas. Given the diversity of unanswered questions in the field of maternal-embryo communication and the wide range of possibilities that these technologies offer, here we discuss future perspectives on the use of these technologies to enhance maternal-embryo research. 相似文献
12.
Abendroth J Gardberg AS Robinson JI Christensen JS Staker BL Myler PJ Stewart LJ Edwards TE 《Journal of structural and functional genomics》2011,12(2):83-95
The Seattle Structural Genomics Center for Infectious Disease (SSGCID) focuses on the structure elucidation of potential drug targets from class A, B, and C infectious disease organisms. Many SSGCID targets are selected because they have homologs in other organisms that are validated drug targets with known structures. Thus, many SSGCID targets are expected to be solved by molecular replacement (MR), and reflective of this, all proteins are expressed in native form. However, many community request targets do not have homologs with known structures and not all internally selected targets readily solve by MR, necessitating experimental phase determination. We have adopted the use of iodide ion soaks and single wavelength anomalous dispersion (SAD) experiments as our primary method for de novo phasing. This method uses existing native crystals and in house data collection, resulting in rapid, low cost structure determination. Iodide ions are non-toxic and soluble at molar concentrations, facilitating binding at numerous hydrophobic or positively charged sites. We have used this technique across a wide range of crystallization conditions with successful structure determination in 16 of 17 cases within the first year of use (94% success rate). Here we present a general overview of this method as well as several examples including SAD phasing of proteins with novel folds and the combined use of SAD and MR for targets with weak MR solutions. These cases highlight the straightforward and powerful method of iodide ion SAD phasing in a high-throughput structural genomics environment. 相似文献
13.
14.
Shi W Zhan C Ignatov A Manjasetty BA Marinkovic N Sullivan M Huang R Chance MR 《Structure (London, England : 1993)》2005,13(10):1473-1486
A high-throughput method for measuring transition metal content based on quantitation of X-ray fluorescence signals was used to analyze 654 proteins selected as targets by the New York Structural GenomiX Research Consortium. Over 10% showed the presence of transition metal atoms in stoichiometric amounts; these totals as well as the abundance distribution are similar to those of the Protein Data Bank. Bioinformatics analysis of the identified metalloproteins in most cases supported the metalloprotein annotation; identification of the conserved metal binding motif was also shown to be useful in verifying structural models of the proteins. Metalloproteomics provides a rapid structural and functional annotation for these sequences and is shown to be approximately 95% accurate in predicting the presence or absence of stoichiometric metal content. The project's goal is to assay at least 1 member from each Pfam family; approximately 500 Pfam families have been characterized with respect to transition metal content so far. 相似文献
15.
《Comparative and Functional Genomics》2002,3(3):221-225
In recent months a bumper crop of genomes has been completed, including the fission yeast (Schizosaccharomyces pombe) and rice (Oryza sativa). Two large-scale studies of Saccharomyces cerevisiae protein complexes provided a picture of the eukaryotic proteome as a network of complexes. Amongst the other stories of interest was a demonstration that proteomic analysis of blood samples can be used to detect ovarian cancer, perhaps even as early as stage I. 相似文献
16.
《Comparative and Functional Genomics》2001,2(6):355-358
Since our last issue, several important genomes have been completely or 'almost completely' sequenced. The debate over the number of human genes has flared up once more, with one computational and one experimental study into the annotation of the human genome. The mouse genome project has a clone fingerprint map to aid their sequencing effort. The SAGE technique has been applied to Drosophila and the US National Science Foundation announced increased spending on plant genome research. 相似文献
17.
《Comparative and Functional Genomics》2002,3(5):398-404
This report on the literature spans from May to July, highlighting breakthroughs on several important genomes, including mouse, zebrafish, Fugu and Plasmodium. Recent papers have reported on a mechanism for genome size reduction in Arabidopsis, comparisons and verifications of large-scale protein-protein interaction datasets, developments in RNA interference approaches for mammalian systems and a solidphase peptide tagging method for proteomics. 相似文献
18.
The success of combinatorial chemistry, and the increased emphasis on single well-characterised compounds of high purity, has had a significant impact on analytical and purification technologies. The requirement for ever-increasing throughput has led to the automation and parallelisation of these techniques. Advances have also been made in developing faster methods to augment throughput further. 相似文献
19.
Auxin measurements in plants are critical to understanding both auxin signaling and metabolic homeostasis. The most abundant natural auxin is indole-3-acetic acid (IAA). This protocol is for the precise, high-throughput determination of free IAA in plant tissue by isotope dilution analysis using gas chromatography-mass spectrometry (GC-MS). The steps described are as follows: harvesting of plant material; amino and polymethylmethacrylate solid-phase purification followed by derivatization with diazomethane (either manual or robotic); GC-MS analysis; and data analysis. [13C?]IAA is the standard used. The amount of tissue required is relatively small (25 mg of fresh weight) and one can process more than 500 samples per week using an automated system. To extract eight samples, this procedure takes ~3 h, whether performed manually or robotically. For processing more than eight samples, robotic extraction becomes substantially more time efficient, saving at least 0.5 h per additional batch of eight samples. 相似文献
20.
群体基因组学能够从全基因组水平揭示种群结构与进化、物种形成、适应性机制等。随着高通量技术的不断发展,基因组测序成本不断降低,大规模测序已成为可能。近几年被全基因组测序的真菌数量迅速增加,极大地促进了真菌群体基因组学的发展,加深了人们对植物病原真菌起源、遗传多样性、选择作用、致病性、毒力因子、杀菌剂抗药性、寄主专化型等生物学特性的认识。本文简要介绍了植物病原真菌的全基因测序以及比较基因组学的研究进展,重点综述了基于高通量测序的病原真菌群体基因组学的最新研究动态。群体基因组学将成为植物病原真菌一个新的研究方向。 相似文献