首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A recent report in this journal [Vairapandi, M. and Duker, N.J. (1993) Nucleic Acids Res. 21, 5323-5327) presented evidence of an activity in HeLa cell nuclear extracts that released radiolabeled material from a poly(dG.dC) polymer that had been methylated and simultaneously labeled on cytosine residues by incubation with a CpG-specific DNA methylase and [methyl-3H]S-adenosylmethionine. Based on chromatographic evidence that the released products were thymine and 5-methylcytosine and on f1p4olabeling data suggesting a concomitant increase in abasic sites, the authors concluded that the releasing activity was a 5-methylcytosine-specific glycosylase and that the solubilized 5-methylcytosine was converted to thymine by a nuclear deaminase. We have confirmed that HeLa nuclear extracts promote release of ethanol-soluble radioactivity from a methyl-labeled poly(dG-5-methyl-dC)polymer, but the products released were neither 5-methylcytosine nor thymine. Furthermore, free 5-methylcytosine was not deaminated by incubation with the nuclear extract. The labeled compound released initially from the polymer appeared to be 5-methyl-deoxycytidine monophosphate, which was converted to 5-methyl-deoxycytidine, thymidine monophosphate, and/or thymidine by further incubation with the nuclear extract. The activity responsible for the release, therefore, was a nuclease. Release of 32P-labeled nucleotides from a 32P-labeled poly(dG-dC) polymer suggested, furthermore, that the activity was not specific for methylated DNA.  相似文献   

2.
The photochemical reactions of 5-methylcytosine (m(5)C), a minor component of mammalian DNA, have been studied at a concentration of 2 mM in frozen 10 mM aqueous NaCl solution at dry ice temperature (194.5 K). For these studies, low-pressure lamps emitting mainly UVB radiation were used. We have isolated and characterized three cyclobutane dimers, namely the cis-anti(c,a) the cis-syn(c,s) and the trans-syn(t,s) forms. While the c,a and the t,s cyclobutane dimers are relatively stable towards deamination upon standing in solution at 277 K, the c,s isomer is gradually converted into the corresponding c,s m(5)C-thymine (Thy) mixed dimer; this latter reaction occurs considerably faster at 310 K. The t,s cyclobutane dimer is converted into the corresponding m(5)C-Thy mixed dimer upon incubation at 373 K, while the c,a dimer is converted into a mixture of m(5)C and c,a mixed dimer when incubated at 310 K. Irradiation of equimolar mixtures of Thy (1 mM) and m(5)C (1 mM) under similar conditions yields each of the three m(5)C cyclobutane dimers, as well as significant amounts of c,a, c,s and t,s m(5)C-Thy mixed cyclobutane dimers. These m(5)C-Thy dimers undergo decompositions similar in nature to the processes undergone by m(5)C cyclobutane dimers. Pseudo-first order rate constants for deamination of the c,s m(5)C homodimer and c,s m(5)C-Thy heterodimer at various temperatures and at pH 7.7 have been measured and the enthalpies and entropies of activation have been evaluated for the deamination processes for these two compounds. The two dimers have half-lives of about 14 and 22 h, respectively, at 310 K; however, at 273 K, the corresponding half-lives can be evaluated as being around 30 and 36 days, respectively.  相似文献   

3.
DNA glycosylases initiate base excision repair (BER) through the generation of potentially harmful abasic sites (AP sites) in DNA. Human thymine-DNA glycosylase (TDG) is a mismatch-specific uracil/thymine-DNA glycosylase with an implicated function in the restoration of G*C base pairs at sites of cytosine or 5-methylcytosine deamination. The rate-limiting step in the action of TDG in vitro is its dissociation from the product AP site, suggesting the existence of a specific enzyme release mechanism in vivo. We show here that TDG interacts with and is covalently modified by the ubiquitin-like proteins SUMO-1 and SUMO-2/3. SUMO conjugation dramatically reduces the DNA substrate and AP site binding affinity of TDG, and this is associated with a significant increase in enzymatic turnover in reactions with a G*U substrate and the loss of G*T processing activity. Sumoylation also potentiates the stimulatory effect of APE1 on TDG. These observations implicate a function of sumoylation in the controlled dissociation of TDG from the AP site and open up novel perspectives for the understanding of the molecular mechanisms coordinating the early steps of BER.  相似文献   

4.
Patterns of DNA methylation, an important epigenetic modification involved in gene silencing and development, are disrupted in cancer cells. Understanding the functional significance of aberrant methylation in tumors remains challenging, due in part to the lack of suitable tools to actively modify methylation patterns. DNA demethylation caused by mammalian DNA methyltransferase inhibitors is transient and replication-dependent, whereas that induced by TET enzymes involves oxidized 5mC derivatives that perform poorly understood regulatory functions. Unlike animals, plants possess enzymes that directly excise unoxidized 5mC from DNA, allowing restoration of unmethylated C through base excision repair. Here, we show that expression of Arabidopsis 5mC DNA glycosylase DEMETER (DME) in colon cancer cells demethylates and reactivates hypermethylated silenced loci. Interestingly, DME expression causes genome-wide changes that include both DNA methylation losses and gains, and partially restores the methylation pattern observed in normal tissue. Furthermore, such methylome reprogramming is accompanied by altered cell cycle responses and increased sensibility to anti-tumor drugs, decreased ability to form colonospheres, and tumor growth impairment in vivo. Our study shows that it is possible to reprogram a human cancer DNA methylome by expression of a plant DNA demethylase.  相似文献   

5.
DNA 5-methylcytosine is a major factor in the silencing of mammalian genes; it is involved in gene expression, differentiation, embryogenesis and neoplastic transformation. A decrease in DNA 5-methylcytosine content is associated with activation of specific genes. There is much evidence indicating this to be an enzymic process, with replacement of 5-methylcytosine by cytosine. We demonstrate here enzymic release of 5-methylcytosines from DNA by a human 5-methylcytosine-DNA glycosylase activity, which affords a possible mechanism for such replacement. This activity generates promutagenic apyrimidinic sites, which can be related to the high frequency of mutations found at DNA 5-methylcytosine loci. The recovery of most released pyrimidines as thymines indicates subsequent deamination of free 5-methylcytosines by a 5-methylcytosine deaminase activity. This prevents possible recycling of 5-methylcytosine into replicative DNA synthesis via a possible 5-methyl-dCTP intermediate synthesized through the pyrimidine salvage pathway. Taken together, these findings indicate mechanisms for removal of 5-methylcytosines from DNA, hypermutability of DNA 5-methylcytosine sites, and exclusion of 5-methylcytosines from DNA during replication.  相似文献   

6.
The modified base, 5-methylcytosine, constitutes approximately 1% of human DNA, but sites containing 5-methylcytosine account for at least 30% of all germline and somatic point mutations. A genetic assay with a sensitivity of 1 in 10(7), based on reversion to neomycin resistance of a mutant pSV2-neo plasmid, was utilized to determine and compare the deamination rates of 5-methylcytosine and cytosine in double-stranded DNA for the first time. The rate constants for spontaneous hydrolytic deamination of 5-methylcytosine and cytosine in double-stranded DNA at 37 degrees C were 5.8 x 10(-13) s-1 and 2.6 x 10(-13) s-1, respectively. These rates are more than sufficient to explain the observed frequency of mutation at sites containing 5-methylcytosine and emphasize the importance of hydrolytic deamination as a major source of human mutations.  相似文献   

7.
8.
5-Methylcytosine residues in DNA underwent deamination at high temperatures. Furthemore, their rate of deamination at neutral or alkaline pH was greater than that of cytosine residues in DNA. As sources of [14C]5-methylcytosine-containing DNA, we used bacteriophage XP-12 DNA, in which 5-methylcytosine residues completely replace C residues, and calf thymus DNA experimentally substituted with [14C]5-methylcytosine residues. Upon incubation at 95°C in a physiological buffer or at 60°C in 1 M NaOH, the respective rates of deamination of 5-methylcytosine residues were about 3- and 1.5-times those of cytosine residues. Under the same conditions, the free 5-methyldeoxycytidine was converted to thymidine more rapidly than deoxycytidine was converted to deoxyuridine. The reactions at physiological pH and elevated temperature suggest that deamination of 5-methylcytosine residues may yield a significant portion of spontaneous mutations in vivo, especially in view of the lack of thymine-specific mismatch repair systems with specificity and efficiency comparable to that of uracil excision repair systems.  相似文献   

9.
5-Hydroxymethyluracil (HmUra) is formed in DNA as a product of oxidative attack on the methyl group of thymine. It is also the product of the deamination of 5-hydroxymethylcytosine (HmCyt) which may be formed via oxidation of 5-methylcytosine (MeCyt). HmUra is removed from DNA by a DNA glycosylase which, together with HmCyt-DNA glycosylase, is unique among DNA repair enzymes in being present in mammalian cells but absent from bacteria and yeast. We found HmUra-DNA glycosylase activity in a wide variety of vertebrate and invertebrate animals (except Drosophila) and in protozoans. In most vertebrate organisms the highest specific activity was in nervous and immune system tissue. The phylogenetic distribution of HmUra-DNA glycosylase correlates with the presence of 5-methylcytosine (MeCyt) as a regulator of gene expression. This distribution of activity supports the contention that HmUra-DNA glycosylase aids in the maintenance of methylated sites in DNA.  相似文献   

10.
11.
Uracil-DNA glycosylase (UDG) protects the genome by removing mutagenic uracil residues resulting from deamination of cytosine. Uracil binds in a rigid pocket at the base of the DNA-binding groove of human UDG and the specificity for uracil over the structurally related DNA bases thymine and cytosine is conferred by shape complementarity, as well as by main chain and Asn204 side chain hydrogen bonds. Here we show that replacement of Asn204 by Asp or Tyr147 by Ala, Cys or Ser results in enzymes that have cytosine-DNA glycosylase (CDG) activity or thymine-DNA glycosylase (TDG) activity, respectively. CDG and the TDG all retain some UDG activity. CDG and TDG have kcat values in the same range as typical multisubstrate-DNA glycosylases, that is at least three orders of magnitude lower than that of the highly selective and efficient wild-type UDG. Expression of CDG or TDG in Escherichia coli causes 4- to 100-fold increases in the yield of rifampicin-resistant mutants. Thus, single amino acid substitutions in UDG result in less selective DNA glycosylases that release normal pyrimidines and confer a mutator phenotype upon the cell. Three of the four new pyrimidine-DNA glycosylases resulted from single nucleotide substitutions, events that may also happen in vivo.  相似文献   

12.
T Ganguly  K M Weems  N J Duker 《Biochemistry》1990,29(31):7222-7228
Ultraviolet irradiation of DNA results in various pyrimidine modifications. We studied the excision of an ultraviolet thymine photoproduct by Escherichia coli endonuclease III and by a preparation of human WI-38 cells. These enzymes cleave UV-irradiated DNA at apyrimidinic sites formed by glycosylic removal of the photoproduct. Poly(dA-[3H]dT).poly(dA-[3H]dT) was UV irradiated and incubated with purified E. coli endonuclease III. 3H-Containing material was released in a manner consistent with Michaelis-Menten kinetics. This 3H-labeled material was determined to be a mixture of thymine hydrates (6-hydroxy-5,6-dihydrothymine), separable from unmodified thymine by chromatography in three independent systems. Both cis-thymine hydrate and trans-thymine hydrate were chemically and photochemically synthesized. These coeluted with the enzyme-released 3H-containing material. No thymine glycol was released from the UV-irradiated polymer. Similar results were obtained with extracts of WI-38 cells as the enzyme source. The release of thymine hydrates by both glycosylase activities was directly proportional to the amount of enzyme and the irradiation dose to the DNA substrate. These results demonstrate the modified thymine residues recognized and excised by endonuclease III and the human enzyme to be a mixture of cis-thymine hydrate and trans-thymine hydrate. The reparability of these thymine hydrates suggests that they are stable in DNA and therefore potentially genotoxic.  相似文献   

13.
Thymine DNA glycosylase (TDG) excises thymine from G.T mispairs and removes a variety of damaged bases (X) with a preference for lesions in a CpG.X context. We recently reported that human TDG rapidly excises 5-halogenated uracils, exhibiting much greater activity for CpG.FU, CpG.ClU, and CpG.BrU than for CpG.T. Here we examine the effects of altering the CpG context on the excision activity for U, T, FU, ClU, and BrU. We show that the maximal activity (k(max)) for G.X substrates depends significantly on the 5' base pair. For example, k(max) decreases by 6-, 11-, and 82-fold for TpG.ClU, GpG.ClU, and ApG.ClU, respectively, as compared with CpG.ClU. For the other G.X substrates, the 5'-neighbor effects have a similar trend but vary in magnitude. The activity for G.FU, G.ClU, and G.BrU, with any 5'-flanking pair, meets and in most cases significantly exceeds the CpG.T activity. Strikingly, human TDG activity is reduced 10(2.3)-10(4.3)-fold for A.X relative to G.X pairs and reduced further for A.X pairs with a 5' pair other than C.G. The effect of altering the 5' pair and/or the opposing base (G.X versus A.X) is greater for substrates that are larger (bromodeoxyuridine, dT) or have a more stable N-glycosidic bond (such as dT). The largest CpG context effects are observed for the excision of thymine. The potential role played by human TDG in the cytotoxic effects of ClU and BrU incorporation into DNA, which can occur under inflammatory conditions and in the cytotoxicity of FU, a widely used anticancer agent, are discussed.  相似文献   

14.
15.
16.
The 5-methylcytosine content of DNA from human tumors   总被引:41,自引:4,他引:41       下载免费PDF全文
The over-all 5-methylcytosine (m5C) content of DNA from normal tissues varies considerably in a tissue-specific manner. By high-performance liquid chromatography, we have examined the m5C contents of enzymatic digests of DNA from 103 human tumors including benign, primary malignant and secondary malignant neoplasms. The diversity and large number of these tumor samples allowed us to compare the range of DNA methylation levels from neoplastic tissues to that of normal tissues from humans. Most of the metastatic neoplasms had significantly lower genomic m5C contents than did most of the benign neoplasms or normal tissues. The percentage of primary malignancies with hypomethylated DNA was intermediate between those of metastases and benign neoplasms. These findings might reflect an involvement of extensive demethylation of DNA in tumor progression. Such demethylation could be a source of the continually generated cellular diversity associated with cancer.  相似文献   

17.
The salvage metabolism of 5-methyldeoxycytidine 5'-monophosphate (5MedCMP) was studied in human promyelocytic leukemia (HL-60) cells and in PHA-stimulated human lymphocytes. To this end [5'-32P]5MedCMP was synthesized by a novel postlabeling procedure. At low substrate concentrations (less than 100 microM), the enzyme(s) present in crude HL-60 whole-cell extract deaminated 5MedCMP faster than they did dCMP. Although the phosphorylation of dCMP to dCDP was easily demonstrable with both kinds of cell extracts, no phosphorylation of 5MedCMP to 5MedCDP (5-methyldeoxycytidine 5'-diphosphate) was observed. This phenomenon was confirmed using HL-60 cells made permeable to nucleotides with Tween 80. In view of the substantial 5MeCyt (5-methylcytosine) content of DNA and the degradation of DNA that occurs in cells, it is conceivable that 5MedCyd (5-methyl-2'-deoxycytidine) and 5MedCMP are available for reutilization in DNA synthesis. This would have devastating effects on cellular control and gene expression. The results of the present investigation indicate that rapid deamination at the monophosphate level and, in particular, stringent discrimination of 5MedCMP by cellular monophosphokinase(s) are the key mechanisms by which reutilization of DNA 5MeCyt is prevented in human hematopoietic cells.  相似文献   

18.
It was found that nonenzymatic DNA methylation proceeds in water solution in the presence of S-adenosylmethionine (AdoMet). The main reaction products are thymine and 5-methylcytosine residues. It was shown that labelled thymine residues are formed also upon DNA incubation in the presence of [methyl-14C]methionine as well as [methyl-14C]cobalamine. Only cytosine reacts with AdoMet resulting in thymine production. AdoMet may be a potential mutagen that induces GC----AT transitions during DNA replication in the cell.  相似文献   

19.
20.
The mammalian thymine DNA glycosylase (TDG) excises 5-carboxylcytosine (5caC) when paired with a guanine in a CpG sequence, in addition to mismatched bases. Here we present a complex structure of the human TDG catalytic mutant, asparagine 140 to alanine (N140A), with a 28-base pair DNA containing a G:5caC pair at pH 4.6. TDG interacts with the carboxylate moiety of target nucleotide 5caC using the side chain of asparagine 230 (N230), instead of asparagine 157 (N157) as previously reported. Mutation of either N157 or N230 residues to aspartate has minimal effect on G:5caC activity while significantly reducing activity on G:U substrate. Combination of both the asparagine-to-aspartate mutations (N157D/N230D) resulted in complete loss of activity on G:5caC while retaining measurable activity on G:U, implying that 5caC can adopt alternative conformations (either N157-interacting or N230-interacting) in the TDG active site to interact with either of the two asparagine side chain for 5caC excision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号