首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
In vitro interferon production by peripheral blood mononuclear cells from 50 children suffering from recurrent upper respiratory tract infections was examined, and compared with that of 50 healthy children. Five respiratory pathogenic viruses and Mycoplasma pneumoniae were used as inducers. Cells from every child responded to at least three out of the six inducers by interferon production. As a group, cultures prepared from patient cells showed decreased production of IFN when stimulated with adeno, rhino, corona or RS viruses or with the mycoplasma. Similar trend between the two groups of children was seen as regards influenza A virus induced IFN production in leukocyte cultures. These results corroborate our previous findings that relative deficiency in interferon production appears to be inducer-specific, and suggest that this phenomenon may have a role in the pathogenesis of recurrent respiratory infections.  相似文献   

2.
Cell-free extracts of Mycoplasma hominis and medium from 72-hr broth cultures had deoxyribonuclease activity like that of deoxyribonuclease I. Mg(++) stimulated activity, and the pH optimum was between 8.0 and 9.0. Double-stranded or heatdenatured deoxyribonucleic acid (DNA) served as a substrate, and oligonucleotides were produced. Cell-free extracts of L cells infected with M. hominis or M. hominis plus equine abortion virus (equine herpes virus, EAV) had greatly increased activity over that of extracts of L cells or of L cells infected with EAV alone. In the absence of M. hominis, however, extracts had little activity, most of which was in virus-infected cell cultures. Activity was found in the culture medium only in those systems in which M. hominis was present. It is concluded that M. hominis can contribute significant deoxyribonuclease activity to virus-infected as well as virusfree cell cultures. Perhaps the most interesting question arising concerns the ability of EAV, a DNA virus, to replicate successfully despite the presence of deoxyribonuclease activity at the site of replication (the nucleus).  相似文献   

3.
Inhibition of Mengo virus by interferon   总被引:4,自引:0,他引:4       下载免费PDF全文
Gauntt, Charles J. (The University of Texas, Austin), and Royce Z. Lockart, Jr. Inhibition of Mengo virus by interferon. J. Bacteriol. 91:176-182. 1966.-The inhibition of Mengo virus replication in L cells resulting from interferon was studied quantitatively. Interferon was titrated on L cells with Western equine encephalomyelitis (WEE) virus as the challenge virus. One protective unit (PU) of interferon is the least amount of interferon which prevents cytopathic effects when a large multiplicity of WEE virus is added subsequent to overnight incubation with interferon. Ten PU of interferon reduced the yields of Mengo virus by about 90%. Larger doses of interferon, up to 220 PU, caused no further reduction in the amount of virus produced. Plaque formation by Mengo virus was also reduced in number by about 85 to 90%, but could not be further reduced. The plaques which formed on interferon-treated cells were reduced in size. We were unable to obtain a virus population with increased resistance to interferon action by use of five successive growth cycles in interferon-treated cultures. Analysis of the cell population for the proportion of cells able to act as infectious centers revealed that incubation of cells with 10 PU of interferon decreased the proportion of virus-yielding cells by 80%. The yield of virus per virus-producing cell was decreased by 40 to 60%. Despite the reduction in yields, plaques, and infectious centers resulting from interferon, all doses of interferon failed to prevent the complete destruction of the cells. Experiments with puromycin indicated that the cytopathic effects observed in L cells infected with Mengo virus required that a virus-directed protein be synthesized between 4 and 5 hr postinfection. The evidence suggested, therefore, that the Mengo virus genome was able to code for new protein synthesis in the absence of the production of infectious virus.  相似文献   

4.
The effects of priming mouse cells with interferon on the production of interferon and its mRNA were investigated. Interferon-treated (primed) mouse L929 cells produce 3 to 10 times more interferon than do nonprimed cells following induction with Newcastle disease virus. Interferon appears 2 to 4 h sooner in the primed cultures than in nonprimed cultures and interferon production by primed cells becomes resistant to inhibition by actinomycin D about 4 h sooner than interferon production in nonprimed cells. Interferon mRNA is detected in primed-induced cells about 2 h earlier than in nonprimed-induced cells. It reaches peak levels about 2 to 4 earlier in primed cells, but it also disappears sooner in primed cells. The total amounts of interferon mRNA isolated from primed-induced cells and nonprimed-induced cells were indistinguishable, by the methods utilized. Therefore, although primed cells can produce significantly more interferon and make interferon mRNA sooner than nonprimed cells, the total amount of interferon mRNA produced is apparently not increased, nor is its half-life prolonged in primed cells. Thus, enhanced interferon production in primed cells may result from enhanced efficiency of translation of interferon mRNA in the primed cells.  相似文献   

5.
Although no detectable interferon was produced when L cells were infected with wild-type VSV (VSV-o), considerable amounts of interferon were produced when cells were infected with UV-irradiated VSV-o at a multiplicity equivalent to 10 PFU/cell. Treatment of VSV-o with UV-light resulted in the marked reduction of the RNA synthesizing capacity and cytotoxity of the virus, and the UV-irradiated virus had neither infectivity nor interfering activity against homologous viruses. The amount of interferon induced by UV-VSV-o was markedly influenced by multiplicity of infection and incubation temperature. Less-virulent temperature-sensitive mutants (VSV-mp and VSV-sp) derived from L cells persistently infected with VSV induced interferon in L cells without treatment of the viruses with UV-light, but these viruses could not induce interferon if the infected cells were incubated at nonpermissive temperature, or if cells were infected at multiplicities of more than 10 PFU/cell. On the other hand, it was shown that treatment of cells with cycloheximide (100 μg/ml) delayed the expression of cell damage caused by non-irradiated VSV-o and resulted in the production of interferon when cycloheximide was removed from the cultures. These results indicate that VSV has intrinsically interferon-inducing capacity in L cells and can induce interferon if the induction is carried out under such condition that cell damage caused by VSV are suppressed or delayed. Furthermore, the effect of pretreatment of cells by interferon and undiluted passage of VSV-o on interferon induction was discussed in relation to persistent infection.  相似文献   

6.
Antiviral action of mouse interferon in heterologous cells   总被引:5,自引:0,他引:5       下载免费PDF全文
Buckler, Charles E. (National Institute of Allergy and Infectious Diseases, Bethesda, Md.), and Samuel Baron. Antiviral action of mouse interferon in heterologous cells. J. Bacteriol. 91:231-235. 1966.-The antiviral action of mouse interferon in cell cultures of mouse, hamster, rat, chicken, and monkey origin was investigated. Using a vesicular stomatitis virus (VSV) plaque reduction test, we found that mouse serum interferon, assayed on closely related rat or hamster cells, exerted 5% of its homologous antiviral activity. This activity was characterized as interferon by its temperature of inactivation, trypsin sensitivity, nonsedimentability, stability at pH 2, lack of inactivation by antibody to virus, and inability to be washed off cells. In the more distantly related chicken and monkey cells, mouse interferon had less than 0.1% of its homologous activity. Conflicting reports of heterologous activity of chicken and mouse interferon preparations may result in part from the observed action of noninterferon inhibitors of vaccinia virus. These inhibitors, like interferon, are stable at pH 2. They are present in mouse serum, mouse lung extracts, and allantoic fluid, and they prevent the development of vaccinia plaques when allowed to remain in contact with cells during virus growth. Unlike interferon the inhibitors are removed by adequate washing of cells prior to virus challenge, and they are not active in the VSV assay system. These findings reemphasize the need for thorough characterization of interferon preparations.  相似文献   

7.
Interferon production by spleen cells from unimmunized C3H mice challenged in vitro with influenza virus AO/PR8 was investigated. Glass-nonadherent cells (lymphocytes) produced significant levels of interferon, although cocultivation of glass-adherent macrophages was needed for optimal production. Treatment of the cells with antithymocyte serum and complement markedly reduced the interferon production. When glass-nonadherent cells were fractionated on a nylon wool column, the T-cell-enriched fraction consistently produced more interferon than the B-cell-enriched fraction. It is concluded that T cells are an important producer of interferon in spleen cell cultures from normal mice upon challenge with influenza virus, although non-T cells (macrophages and B cells) also may produce interferon under suitable conditions.  相似文献   

8.
The relationship between prostaglandins (PG) and interferon (IFN) was investigated. IFN induced the synthesis of immunoreactive PGE and PGA at early and late stages, respectively, of vaccinia virus infection in mouse L fibroblasts. Only species-specific IFN possessed this activity and PG synthesis was stimulated in virus-infected cells, while normal L cells were not affected. The vaccinia virus infection did not significantly alter PG synthesis in the absence of IFN. Indomethacin increased the rate of vaccinia virus replication and partially inhibited the IFN-induced protection of L cells. The addition of exogenous PGA1 only partially reversed this effect. Finally, short-term PGA treatment induced the synthesis of two enzymes (protein kinase and 2,5A synthetase) thought to be partially responsible for the antiviral action of interferon. These findings suggest that a prostaglandin or PG-related compound seems to mediate at least one aspect of IFN action.  相似文献   

9.
Various species of mycoplasmas were tested for their ability to induce cytokine production in human peripheral blood mononuclear cells (PBMC). Human PBMC were incubated with Mycoplasma pneumoniae, M. hyorhinis, M. arginini, M. salivarium, M. orale, M. gallisepticum or A. laidlawii for 48 hr, and the activities of interleukin-1 beta (IL-1 beta), IL-2, IL-4, IL-6, tumor necrosis factor-alpha (TNF-alpha) and interferon (IFN) in the supernatants were determined by ELISA or bioassay. All mycoplasma species induced IL-1 beta, IL-6 and TNF-alpha, although IL-2 was induced only by M. pneumoniae. IFN was induced by 5 of the 7 species, and the IFN produced was antigenically confirmed to be mainly IFN-alpha. On the other hand, mycoplasma-stimulated cultures did not contain detectable amounts of IFN-beta and IL-4 activities. Furthermore, the cytokines were induced by mycoplasmal contaminating cells in human PBMC as well as by mycoplasma alone. These results suggest that many kinds of cytokines induced by mycoplasma contamination in cell culture affect immunological experiments in vitro.  相似文献   

10.
Variation of Interferon Production During the Cell Cycle   总被引:1,自引:0,他引:1       下载免费PDF全文
The capacity of cells to produce interferon has been found to depend on the phase in the cell cycle at which virus infection took place. Monolayer cultures of L cells were synchronized by the double thymidine-block method. Such synchronously growing cultures were used to study the ability of cells to produce interferon when they were infected with ultraviolet-inactivated Newcastle disease virus (UV-NDV) at different phases of the cell cycle. In all instances, interferon was detected early and reached a maximum at about 16 hr after infection. However, the levels of interferon found in medium of cultures infected at early post-deoxyribonucleic acid (DNA) synthetic (G2) and to some extent at late G2 phases of the cell cycle were comparatively lower than those found in cultures infected at the early DNA synthetic (S) phase. There appeared also in these infected growing cultures a transient period when interferon production was apparently delayed. This period corresponded interestingly with the time of mitotic burst. Infection of thymidine- or 1-beta-d-arabino-furanosylcytosine-inhibited cultures with UV-NDV also led to similar interferon response as that observed in growing cultures infected at early S. However, no transient delay of interferon production was demonstrated in these cultures.  相似文献   

11.
Gordon, Irving (University of Southern California, Los Angeles), Sara S. Chenault, Douglas Stevenson, and Jean D. Acton. Effect of interferon on polymerization of single-stranded and double-stranded mengovirus ribonucleic acid. J. Bacteriol. 91:1230-1238. 1966.-The effect of interferon on actinomycin-resistant mengovirus ribonucleic acid (RNA) replication in L cells was investigated to determine whether defective or partially polymerized RNA products were made and whether synthesis of any specific class of virus RNA was prevented. RNA labeled with uridine-C(14) was extracted in hot and cold phenol and analyzed by zonal sucrose density centrifugation. Both single- and double-stranded infectious RNA peaks were identified. Interferon treatment caused almost complete depression of uridine-C(14) incorporation throughout linear sucrose gradients except in the 4S region, and no infectivity was detectable in any fraction. These inhibitory effects are attributable to the action of interferon, because they were reversed when cultures were treated with actinomycin D simultaneously with interferon. The results, with those of other investigators, indicate that the step at which interferon interrupts virus multiplication is between the events immediately after uncoating and the formation of template "minus" strands; under the conditions of our experiments, no partially polymerized virus RNA products were made.  相似文献   

12.
Wheelock, Frederick E. (Western Reserve University, Cleveland, Ohio). Virus replication and high-titered interferon production in human leukocyte cultures inoculated with Newcastle disease virus. J. Bacteriol. 92:1415-1421. 1966.-High titers of interferon (20,480 culture-protecting units per ml) are produced in freshly prepared human leukocyte cultures inoculated with a Newcastle disease virus (NDV)-cell multiplicity of 1:1. NDV replicates to low titers in these cultures. Incubation of leukocytes at 37 C for 24 hr prior to inoculation of NDV results in almost complete loss of detectable interferon production, but virus replicates to higher titers than in the freshly prepared cultures. In contrast, no diminution of interferon production in response to phytohemagglutinin (PHA) occurs on 24 hr of incubation of cultures prior to addition of PHA. Experiments with cultures of predominantly pure cell fractions of peripheral blood indicate that the lymphocyte fraction produces interferon in response to either NDV or PHA, and that polymorphonuclear leukocytes produce no interferon in response to these agents. These studies suggest a hitherto unsuspected ability of human lymphocytes to produce high titers of interferon in vivo.  相似文献   

13.
14.
Interferon-Inducing Characteristics of MM Virus   总被引:3,自引:0,他引:3       下载免费PDF全文
Interferon induction by MM virus in mice and in L cells was studied. In mice the virus readily induced interferon. The time of appearance was dose-dependent. A large virus dose induced interferon by 4 hr, whereas a small dose resulted in interferon production which paralleled virus replication 24 hr after infection. In L cells the interferon-inducing capacity of the virus was rapidly destroyed by ultraviolet light irradiation. Heating (56 C) of the virus, on the other hand, greatly increased its ability to induce interferon. Interferon production could also be increased by prior treatment of the cells with homologous interferon (priming). The increase in interferon production after priming was dependent on the concentration of interferon used for priming, the length of interferon treatment, and the multiplicity of infection. It is suggested that MM virus might be useful for the further study of the mechanisms involved in the production and action of interferon.  相似文献   

15.
Two sublines of mouse L929 cells designated L929B and L929M were studied. The L929B cells, which displayed a 2-3-fold higher IFN production in response to Sendai virus than that of the L929M cells, had a higher sensitivity to the antiviral and priming effects of IFN and were more resistant to VSV. In good accord with the amount of IFN produced, more translatable IFN mRNA was isolated from the L929B cells. IFN production and IFN mRNA activities were proportionally increased in the IFN-primed cultures of both sublines. Results indicate that both inherent and priming-induced increased-IFN production are based on pretranslational control mechanisms.  相似文献   

16.
Vesicular stomatitis virus and encephalomyocarditis virus do not multiply in the majority of peritoneal macrophages freshly explanted from 4- to 8-week-old male or female mice. However, when peritoneal macrophages were cultivated in vitro for 3 to 5 days, these cells became permissive for both viruses. The loss of antiviral state in "aged" macrophages paralleled a significant decrease in the intracellular levels of (2'-5')oligo-adenylate synthetase activity. Although biologically active interferon was not detected in the nutrient medium of macrophage cultures, freshly harvested peritoneal cells could confer an antiviral state on monolayer cultures of mouse cells (aged macrophages, embryonic fibroblasts, and L cells) but not on heterologous chicken embryo, rabbit kidney, or human cells infected with vesicular stomatitis virus or encephalomyocarditis virus. The conferred antiviral state required at least 7 h to develop in target cells and was totally inhibited by the presence of antibody to mouse interferon alpha/beta but not to interferon gamma in the cocultures. Heterologous guinea pig and rabbit peritoneal cells could not transfer an antiviral state to target mouse cells. Donor peritoneal cells from mice preinjected with antibody to interferon alpha/beta could not transfer an antiviral state to target mouse cells. This ensemble of results indicating that freshly harvested peritoneal cells transfer interferon (which is responsible for inducing an antiviral state in susceptible mouse target cells) adds further experimental evidence that interferon is spontaneously expressed in normal mice and plays an important role in maintaining some host cells in an antiviral state.  相似文献   

17.
Somerson, Norman L. (National Institutes of Health, Bethesda, Md.), Paul R. Reich, Barbara E. Walls, Robert M. Chanock, and Sherman M. Weissman. Genetic differentiation by nucleic acid homology. II. Genotypic variations within two Mycoplasma species. J. Bacteriol. 92:311-317. 1966.-A deoxyribonucleic-ribonucleic acid (DNA-RNA) homology technique was used to determine genetic relatedness among the nucleic acids of eight mycoplasmas which were serologically classified as Mycoplasma hominis type 1. The DNA preparations from these organisms were each found to be distinct. No subgrouping of the M. hominis type 1 strains could be demonstrated. In contrast, when the nucleic acids from six serologically related mycoplasmas which were isolated from tissue cultures were studied, the DNA from these species could not be distinguished. The DNA buoyant densities of the tissue culture isolates were similar. These isolates were closely related genetically to a porcine mycoplasma, M. hyorhinis.  相似文献   

18.
Summary We have developed a simple method for rapid detection of mycoplasma contamination in cell cultures using SYBR Green-based real-time polymerase chain reaction (PCR). To detect eight common contaminant mollicutes, including Mycoplasma (M. arginini, M. fermentans, M. orale, M. hyorhinis, M. hominis, M. salivarium, M. pirum) and Acholeplasma laidlawii, four primers were prepared based on the 23S rRNA regions. Using these primers and a minimum of 100 fg of mycoplasma genomic DNA, the 23S rRNA regions of these eight mycoplasma species were consistently amplified by real-time PCR. In contrast, no specific specific amplification product was observed using DNA templates prepared from various mammalian cell lines. Frozen and cultured samples of several cell lines were tested for mycoplasma contamination to evaluated the utility of this method. Of 25 samples that tested positive for mycoplasma by Hoechst staining, which requires two passages of cell cultures started from frozen samples, mycoplasma was detected by real-time PCR in 24 samples of cell extracts prepared directly from frozen samples. When cultured samples were used for this assay, the accuracy of the diagnoses was further improved. Thus, this technique, which is simple, rapid, and sensitive enough for practical application, in suitable for handling many samples and for routine screening for mycoplasma contamination of cell cultures.  相似文献   

19.
New simple dye-uptake assay for interferon   总被引:1,自引:0,他引:1  
Using the spectrophotometer that the authors developed, the amounts of human leukocyte and mouse L cell interferons on FL cells and L929 cells were measured and values were compared with those measured by the cytopathogenic effect (CPE) reduction method (CPE method). The spectrophotometric method, which was simpler than the original dye-uptake method, was found to be more sensitive than the latter. When Sindbis virus was used instead of vesicular stomatitis virus (VSV), there were no significant differences in the sensitivities of the two methods or the interferon titers estimated. When FL cells or L929 cells were treated with interferon at the time of their dispersion, their interferon titers were almost the same as those of cells treated with interferon 2 days after dispersion. It is concluded that this new dye-uptake method is useful for assay of human and mouse interferons.  相似文献   

20.
We have identified two different and independent effects of sodium butyrate on induction and action of interferon. In the monkey cell line, GL-V3, simultaneous treatment with interferon and butyrate strongly reduced the antiviral activity of the interferon preparation, Whereas addition of butyrate before interferon or after establishment of the antiviral state had no effect. Interferon production induced by Sendai virus was also reduced by simultaneous treatment with butyrate, but pretreatment resulted in marked enhancement of interferon yields. Whereas the inhibitory effects of simultaneous butyrate treatment were also observed in human (WISH) and bovine (MDBK) cells, pretreatment with butyrate in these cells had no effect on interferon yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号