首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. Continuous high resolution measurement of sugar beet leaf extension over 5 d in growth chambers showed average leaf extension rates (LER) in darkness to be from three to six times those in light for plants growing in non-salinized media. The changes in LER in light-dark transitions occurred within seconds, a response which was more rapid than stomatal opening or closing. When the growth medium was salinized to 100 mol m−3 NaCl, LER's were reduced by about 50% in darkness and 90% in light, markedly increasing the ratio of dark to light LER.
A 2-d episode of root-zone salinity imposed midway through a 5-d period of measurement decreased LER and produced higher leaf temperatures. LER and diurnal leaf temperature patterns reverted to their pre-salinized levels when root-zone salinity was removed. Thus, the effects of short episodes of high sodium chloride in the growth medium appear to be reversible, suggesting a water stress mechanism of growth reduction rather than toxicity effects of salt.  相似文献   

2.
3.
Physiological responses of Agropyron desertorum and Pseudoroegneria spicata , two common cold desert perennial tussock grass species of the North American Great Basin, were evaluated during and after a period of imposed drought in a pot study. The timing and the pattern of response of leaf water potential (Ψ1), stomatal conductance (gs), and root growth were strikingly similar in both species during and after drought. The severity of stress influenced the magnitude of Ψ1 and gs, but had little effect on the timing of these responses. Although drought inhibited total root length in prestressed plants, within 4 days after relief of drought both species showed similar increases in root growth which exceeded those of the control. Despite similarities in their root growth responses to increased soil water availability, the two grasses differed in their capacity to restore N uptake following drought. By 14 days after rewatering, N uptake in the prestressed Agropyron had recovered to levels of control plants, although both root biomass and root lenght were much less than those of the controls. This is attributed to elevated root uptake kinetics. Restoration of N uptake by prestressed Pseudoregneria was much less effective during the same period.  相似文献   

4.
Morphological characteristics and biomass allocation of two perennial grasses, Pseudoroegneria spicata (Pursh) A. Löve ssp. spicata (bluebunch wheatgrass) and Agropyron desertorum (Fisch. ex Link) Schult. (crested wheatgrass), were compared under different competition and nutrient treatments. The competitive responses of two plants grown in containers under field conditions were assessed in monocultures and mixtures in two experiments using different scales of nutrient application. In the Small-Scale Experiment, a localized fertilization was applied in the rooting zone between two plants; in the Large-Scale Experiment the entire container was supplied with nutrients. Agropyron responded more vigorously to fertilization than did Pseudoroegneria, but based on the relative performance of Agropyron in monoculture and mixture, it was not superior to Pseudoroegneria in resource competition. Pseudoroegneria was apparently able to recognize neighboring plants as either conspecifics or individuals of the other species. The responses included changes in shoot architecture, root morphology, and allocation between roots and shoots. Agropyron generally did not exhibit such morphological flexibility. In field plot plantings of 4-yr-old tussocks similar shoot differences were seen in Pseudoroegneria. There was, however, no indication of superior resource competition for Agropyron. Thus, any early advantage of Agropyron in vigorous growth of young plants in response to nutrients was apparently lost by the time the plants had reached this stage of development. Morphological and allocation flexibility of Pseudoroegneria may have compensated for slower, less vigorous growth. If species-specific recognition and morphological plasticity are common in nature, this complicates our attempts to understand mechanisms of competition.  相似文献   

5.
Detached barley (Hordeum vulgare L.) shoots, maintained at different air temperatures and VPDs, were fed ABA via the sub-crown internode in a leaf elongation assay. Analysis of variance of leaf elongation rate (LER) showed significant effects of temperature (T), fed [ABA] and the interaction T × [ABA]. However, the interaction became non-significant when LER was modelled against the [ABA] of the elongation zone, [EZ-ABA] When detached barley shoots were fed sap from droughted maize (Zea mays L.) plants, sap [ABA] could not explain the growth inhibitory activity. Measurement of [EZ-ABA] accounted for this ‘unexplained’ growth inhibition. The detached shoot experiments indicated that [EZ-ABA], and not xylem sap [ABA], was an appropriate explanatory variable to measure in droughted plants. However, ABA accumulation in the elongation zone could not explain a 35% growth reduction in intact droughted plants; thus we considered an interaction of water status and ABA. Using a coleoptile growth assay, we applied mild osmotic stresses (ψ=0 to ?0.06 MPa) and 10?4 mol m?3 ABA. Individually, these treatments did not inhibit growth. However, osmotic stress and ABA applied together significantly reduced growth. This interaction may be an important mechanism in explaining leaf growth inhibition of droughted plants.  相似文献   

6.
Three controlled environment experiments were conducted at different temperatures to determine the relation between temperature and leaf development and growth in the potato (cv. Maris Piper). Developmental stages are defined for the appearance and duration of leaf extension in the potato and comparisons made with other temperate zone crops. The rate of leaf appearance was linear over the temperature range (9–25°C) and above 25°C there was no further increase in the rate. The temperature coefficient for the rate of appearance of leaves was 0.032 leaves (degree days)-1 using a base temperature of 0°C. The duration of extension of an individual leaf decreased with increase in temperature up to 25°C such that the thermal duration was constant at 170 degree days using a base temperature of 0°C for leaf positions 4–10 on the main stem. At higher leaf positions the thermal duration was similar or greater. The advantages and limitations of controlled environment work as a parallel to field experimentation are discussed.  相似文献   

7.
Abstract Rate of leaf emergence of barley grown in the field in each of 2 years was affected by sowing date and, where direct comparisons were possible, it was found that leaves on late-sown plants emerged more quickly. Rate of leaf emergence fluctuated throughout the season, slowing almost to zero in the winter. Much of this variation in rate was removed when the number of leaves was plotted against accumulated temperature rather than time. When emergence rates for each sowing were calculated using a common base temperature they were found to be well correlated with rate of change of daylength. However, it was (bund that base temperature as well as temperature response was affected by date of sowing. The pattern of change of size of leaves was also affected by date of sowing. It appeared that in low temperatures and short days, there was no increase in leaf size from leaf position to leaf position. The responses of leaf emergence, extension and final size to date of sowing appear to adapt the plant to grow quickly when sown early but to cease growth and possibly frost-harden at low temperatures.  相似文献   

8.
The effects of summer drought, dew deposition on leaves and autumn rainfall on plant water relations and diurnal variations of photosynthesis were measured in two evergreen shrubs, rosemary ( Rosmarinus officinalis ) and lavender ( Lavandula stoechas ), grown in Mediterranean field conditions. Withholding water for 40 d caused a similar decrease in predawn shoot water potential (ψpd) from c. −0.4 to c. −1.3 MPa in both species, but a 50% decrease in the relative leaf water content in L. stoechas compared with 22% in R. officinalis . A similar decrease in CO2 assimilation rates by c. 75% was observed in water-stressed plants of both species, although L. stoechas showed smaller photosynthesis: stomatal conductance ratio than R. officinalis (35 vs 45 μmol CO2:mol H2O). The relative quantum efficiency of photosystem II photochemistry also decreased by c. 45% at midday in water- stressed plants of both species. Nevertheless, neither L. stoechas nor R. officinalis suffered drought-induced damage to photosystem II, as indicated by the maintenance of the ratio F v: F m throughout the experiment, associated with an increase in the carotenoid content per unit of chlorophyll by c. 62% and c. 30%, respectively, in water-stressed plants. Only L. stoechas absorbed dew by leaves. In this species the occurrence of 6 d of dew over a 15-d period improved relative leaf water content by c. 72% and shoot water potential by c. 0.5 MPa throughout the day in water-stressed plants, although the photosynthetic capacity was not recovered until the occurrence of autumn rainfall. The ability of leaves to absorb dew allowed L. stoechas to restore plant water status, which is especially relevant in plants exposed to prolonged drought.  相似文献   

9.
10.
Cui  Muyi  Caldwell  Martyn M. 《Plant and Soil》1997,191(2):291-299
To assess changes in soil nutrients, root growth and mycrorrhizal infection in response to rain events, a water pulse was applied to a very dry soil. Wetting of a dry soil in the Great Basin of the Western United States led to a striking pulse of available soil nitrate in a field plot, but available phosphate was not affected. This is the first field demonstration of this phenomenon in the Great Basin as far as we are aware. This pulse was only apparent for a few days, probably due to microbial immobilization of the nitrogen. Root ammonium uptake capacity increased within one day of the water pulse, but new root growth was not apparent until 3 days after the water pulse. Thus, to capture this ephemeral release of nitrogen, enhanced uptake capacity of existing roots was probably more important than development of new roots. Mycorrhizal infection was not affected by the water pulse treatments. However, since the water pulse only affected nitrogen availability and mycorrhizae are generally most effective in facilitating acquisition of less mobile nutrients such as phosphate, mycorrhizae likely do not play an important role in taking advantage of this opportunity provided by the pulse of water.  相似文献   

11.
At an optimal growth temperature of 20°C, expending 4th leaves of Lolium temulentum L. synthesised a broad spectrum of polypeptides which altered with the maturity of the leaf tissue. Elevation of the temperature to 35°C, or above, induced synthesis of heat-shock proteins (hsp), and all parts of the 4th leaf were capable of this response. The threshold temperature for induction of hsp synthesis was little affected by the growth temperature (5 or 20°C). In contrast, a sudden 15–18°C decrease in temperature did not result in a marked alteration of protein synthesis patterns. It is concluded that in this species adaptation to rapid temperature reduction is not mediated by stress protein synthesis.  相似文献   

12.
The workers’ sting extension in response to noxious stimulations is a common test used to study physiological modulations of behaviour in the honey bee. In this study, we investigated the variation of the sting extension response between honey bee workers from different patrilines in a colony with a naturally mated queen. We found that the sting extension response varied according to patrilines, indicating a genetic contribution to the intra-colonial variation of this behaviour. Patrilines differed in their responses during successive stimulations applied at a constant level: bees belonging to some patrilines exhibited a constant level of response during repeated stimulations, while others showed a decreasing response under the same conditions. These results fit well with the models of division of labour based on differences in response thresholds among workers of different subfamilies. This study was carried out in the Laboratoire de Neurobiologie Comparée des Invertébrés (INRA) in Bures-sur-Yvette, France Received 29 April 2005; revised 8 July 2005; accepted 25 July 2005.  相似文献   

13.
BACKGROUND AND AIMS: Growth of grass species in temperate-humid regions is restricted by low temperatures. This study analyses the origin (intrinsic or size-mediated) and mechanisms (activity of individual meristems vs. number of active meristems) of differences between Bromus stamineus and Lolium perenne in the response of leaf elongation to moderately low temperatures. METHODS: Field experiments were conducted at Balcarce, Argentina over 2 years (2003 and 2004) using four cultivars, two of B. stamineus and two of L. perenne. Leaf elongation rate (LER) per tiller and of each growing leaf, number of growing leaves and total leaf length per tiller were measured on 15-20 tillers per cultivar, for 12 (2003) or 10 weeks (2004) during autumn and winter. KEY RESULTS: LER was faster in B. stamineus than in L. perenne. In part, this was related to size-mediated effects, as total leaf length per tiller correlated with LER and B. stamineus tillers were 71% larger than L. perenne tillers. However, accounting for size effects revealed intrinsic differences between species in their temperature response. These were based on the number of leaf meristems simultaneously active and not on the (maximum) rate at which individual leaves elongated. Species differences were greater at higher temperatures, being barely notable below 5 degrees C (air temperature). CONCLUSIONS: Bromus stamineus can sustain a higher LER per tiller than L. perenne at air temperatures > 6 degrees C. In the field, this effect would be compounded with time as higher elongation rates lead to greater tiller sizes.  相似文献   

14.
To understand the adaptive capacity of a species in response to rapid habitat destruction and climate change, we investigated variation in body temperature (Tb) of three species of antelope, namely eland, blue wildebeest and impala, using abdominally-implanted temperature data loggers. The study was conducted at two climatically contrasting environments in South Africa, one with a less seasonal and mild winter (Mapungubwe National Park) and the other with a more seasonal, long and cold winter (Asante Sana Game Reserve). Since the habitat with long and cold winters would be suboptimal for these African antelopes, which evolved in less seasonal and hot environments, antelopes in Asante Sana were expected to exhibit a larger amplitude in Tb and a lower minimum body temperature (Min Tb) during winter to reduce Tb and the ambient temperature (TbTa) gradient to save energy. In both eland and impala, 24-h body temperature amplitude did not differ between the study sites, regardless of season. Conversely, wildebeest in Mapungubwe showed a higher variability in the 24-h amplitude of body temperature and also a lower Min Tb during winter and spring than the wildebeest in Asante Sana. This variation in Tb among Mapungubwe wildebeest was influenced by both the amplitude of ambient temperature (positive) and cumulative rainfall (negative), which was not the case for wildebeest in Asante Sana. We propose that the low Min Tb of wildebeest in Mapungubwe was the result of nutritional stress during winter and spring; an evident response even during a year of average rainfall. Therefore, these wildebeest apparently live in a physiologically stressful environment. With the predicted increase in the frequency and intensity of drought periods in southern Africa, wildebeest and other grazers, will likely experience greater nutritional stress in the future.  相似文献   

15.
Abstract. Factors affecting stomatal conductance (g1) of pearl millet ( Pennisetum americanum [L.] Leeke), cultivar BJ 104, were examined in the field in India during the dry season.
Diurnal changes in g1 were evaluated for upper expanded leaves at flowering on two occasions using plants subjected to varying degrees of water stress. Except for the most severely stressed treatment, diurnal changes in g1 closely matched changes in irradiance ( I ), the promotive effect of which largely overcame opposing influences on g1 of increasing atmospheric vapour pressure deficit, and decreasing leaf water and turgor potentials (Ψ, Ψp).
Two main effects of water stress on g1 were evident: (i) a decrease in the amplitude of the mid-day peak in g1, and (ii) a decrease in the time over which high g1 was maintained, resulting in early (mid-day) closure and hysteresis in the relationship between g1 and I .
Leaf conductance was greatest for upper leaves and decreased down the canopy. At equivalent depths in the canopy g1 was higher in flowering than in photoperiodically-retarded plants of the same age. The magnitude of water stress-induced stomatal closure increased down the plant, and was more marked in retarded than in flowering plants.
Within individual stress treatments Ψ of upper leaves decreased linearly as transpiration flux increased. It is concluded that stomatal behaviour of upper leaves of pearl millet at flowering largely operates to maximize assimilation rather than to minimize water loss.  相似文献   

16.
We measured specific leaf area (SLA) and six of its determinants (the thickness of lamina, mesophyll, epidermis, mid-vein and mid-vein support tissues and leaf water content) in a collection of 22 herbaceous species grown in factorial combinations of high μ 1100 (mol m–2 s–1) and low (200) irradiance crossed with high (1 : 1) and low (1 : 6 dilution) concentrations of a modified Hoagland hydroponic solution. SLA increased with both decreasing irradiance and with increasing nutrient availability but there was a strong interaction between the two. Lamina and mesophyll thickness both increased with increasing irradiance and nutrient availability without any interaction. The experimental treatments had complicated effects on mid-vein thickness and its support tissues. Leaf water content (a measure of leaf tissue density) decreased with increasing irradiance levels and with decreasing nutrient supply, but with an interaction between the two treatments. Changes in nutrient supply had no effect on SLA at high irradiance because leaf thickness and leaf tissue density changed in a compensatory way. A path analysis revealed that each of the components affected SLA when the others were statistically controlled but the strengths of the effects of mesophyll thickness, mid-vein thickness and water content differed between treatment groups. The effect of epidermal thickness on SLA was constant across environments and it showed no significant covariation with the other determinants. There was significant covariation between mesophyll thickness, mid-vein thickness and water content and this covariation was constant across the treatment groups.  相似文献   

17.
The influence of irradiance on photosynthesis under natural conditions was studied in aseasonal Singapore using three Heliconia taxa: H. rostrata, H. psittacorum × H. spathocircinata cv. Golden Torch and H. psittacorum cv. Tay. When grown under full sunlight, all three heliconias exhibited reduced phatosynthetic capacities and lowered chlorophyll content per leaf area as compared with those grown under intermediate and deep shade. A marked decrease in the chlorophyll fluorescence Fv/Fm ratio and an increase in photochemical quenching (1- qp) and non-photochemical quenching (qN) were observed in upper leaves of plants grown under full sunlight. Increases in qN suggest that ‘photoinhibition’ (decreases in Fv/Fm) in Heliconia grown under natural tropical conditions are probably due to photoprotective energy dissipation processes. The quantum yield, the maximum photosynthetic rate, Fv/Fm and the chlorophyll content of upper leaves were lower than those of lower leaves on the same plants grown under full sunlight. Similarly, lower values were obtained for the tip (sun) portion than for the base (shaded) portion of the leaves. The changes in Fv/Fm and in the levels of (1 –qp) in leaves grown under intermediate and deep shade were negligible in plants during the course of day. However, there was a steep decrease in Fv/Fm and an increase in the levels of (1 –qp), along with an increase in incident light in the sun leaves. The lowest Fv/Fm and the highest level of (1 –qp) indicated minimum PSII efficiency at midday in full sun. These results indicate that, in Heliconia, the top leaves (particularly leaf tips) experienced sustained decreases in PSII efficiency upon exposure to full sunlight. Although all three taxa exhibited sustained decreases in photosynthetic capacity in full sunlight, the sun leaves of ‘Tay’ showed higher photosynthetic capacity than those of the other two taxa. This could be due, at least in part, to the vertical leaf angle and smaller lamina area. When the upright leaves of ‘Tay’ were constrained to a horizontal angle, they exhibited lower PSII efficiency (FvIFm ratio), while horizontal leaves of ‘Rostrata’ and ‘Golden Torch’ inclined lo near-vertical angles showed increased efficiency. Thus, an increase in leaf angle helps to achieve a reduction in the sustained decrease in PSII efficiency by decreasing the levels of incident sunlight and subsequently the leaf temperature.  相似文献   

18.
Abstract. The embedding of Lithops plants into the soil could be an adaptation to protect the plants from critical low or high temperatures. Thermoelectric measurements on Lithops lesliei N.E. Br and L. turbiniformis (Haw.) N.E. Br. were made to determine whether the temperatures of the plant tissues at various depths differ from those in the soil close to the plant. The environmental conditions of their habitat were simulated in a growth chamber equipped with a cold sky to simulate the net radiation loss during a cool and clear night. The effects of microclimatic conditions resulting in dew or hoar-frost formation on the plant were investigated, as well as the temperature range where freezing occurs.
The results provide no evidence that the embedding of a Lithops plant into the soil yields advantages to the plants in respect of critical low or high temperatures. Plant temperatures are always very close to the soil temperatures at the same depth, but heat fluxes from the bottom or the plant and its surrounding soil to the top of the plant can occur if the plant freezes. No positive effect on the temperature relations could be detected when dew or hoar-frost is formed on the top of the plant. Lithops is frost hard to at least –3°C.  相似文献   

19.
The slender mutant of barley (Hordeum vulgare L.) results from an alteration to a single nuclear gene. Plants homozygous for the mutant allele have long, attenuated leaves as a result of a greatly increased extension rate. Although the growth rate at any one position in the extension zone appears not to differ between slender and normal (wild-type) barley, in slender the length of the zone over which cells extend is approximately 50% greater than that in normal barley. Epidermal cells are both longer and narrower in slender, so the whole-plant phenotype is mirrored at the cell level. Translation in vitro of RNA extracted from successive sections of the young primary leaf, followed by one-dimensional SDS-PAGE separation, facilitated the alignment of equivalent developmental stages in the two genotypes, but failed to demonstrate major differences between the two genotypes. Two-dimensional separation of translation products from total leaf tissue revealed a few small differences between normal and slender. Growth of plants at 8°C compared with 20°C caused changes in some translation products, with one (unknown) product decreasing in abundance in cold-treated normal tissue but not in slender tissue.  相似文献   

20.
The relationship between water availability and plant growth response in Halimium halimifolium (L.) Willk throughout two years with contrasted precipitation (300 and 850 mm) was examined by measuring vegetative growth and midday leaf water potential in four sandy soil sites with different water availability in Doñana National Park, Spain. H. halimifolium, Cistaceae is mostly restricted to sandy substrates close to coastal Mediterranean areas. At Doñana National Park this species is the main component of stable sand vegetation. Vegetative growth started in March, ending in July. The maximum shoot elongation rate (110 mm/year) and number of branches (8.3 branches/year) occurred in plants growing in the most hygrophytic site (MN) in both the wet and dry years. Plants at this site exhibited higher midday water potentials throughout the year. In contrast, the minimum shoot elongation rate (40 mm/year) and midday water potential (–4.0 MPa) occurred in Monte Intermedio plants (MI) in the dry year, although the water table was shallower than in Monte Blanco (MB). In the wet year the minimum shoot and branch elongation were recorded in MB. The number of leaves per branch for a single main shoot was higher (55 leaves/branch) in the driest area (MB), but these leaves had the smallest area. ANOVA showed significant differences in growth response and midday water potential between the four sites. A stepwise multiple linear regression showed that midday water potential, water table depth and monthly average temperature were the variables most closely associated with shoot elongation rate. We conclude that under severe dryness, the expected patterns of greater growth in sites with better water supply may differ from compared with the expected growth pattern in normal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号