首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystallization conditions of an intact monoclonal IgG4 (immunoglobulin G, subclass 4) antibody were established in vapor diffusion mode by sparse matrix screening and subsequent optimization. The procedure was transferred to microbatch conditions and a phase diagram was built showing surprisingly low solubility of the antibody at equilibrium. With up-scaling to process scale in mind, purification efficiency of the crystallization step was investigated. Added model protein contaminants were excluded from the crystals to more than 95%. No measurable loss of Fc-binding activity was observed in the crystallized and redissolved antibody. Conditions could be adapted to crystallize the antibody directly from concentrated and diafiltrated cell culture supernatant, showing purification efficiency similar to that of Protein A chromatography. We conclude that crystallization has the potential to be included in downstream processing as a low-cost purification or formulation step.  相似文献   

2.
Aprotinin, a bovine protease inhibitor currently also produced in recombinant bacteria, yeast, and corn, has valuable applications as a human therapeutic and in tissue culture. The objective of this work was to develop the basis of a large-scale aprotinin purification process centered on immobilized metal ion affinity chromatography (IMAC). This technique uses ligands—metal ions—of a lower cost and higher stability than those traditionally used in affinity chromatography. Since aprotinin does not interact with IMAC ligands, collection is from the nonretained fractions (negative chromatography). Stirred-tank batch IMAC adsorption experiments indicated that one-step aprotinin purification could not be successful. Immobilized chymotrypsin chromatography was then used as a prepurification step, yielding a suitable feed for IMAC (with purification factors as high as 476). IMAC column fed with these prepurified materials produced purified aprotinin in the nonretained fractions with purification factors as high as 952.  相似文献   

3.
Plants have attracted interest as hosts for protein expression because of the promise of a large production capacity and a low production cost. However, recovery costs remain a challenge as illustrated for recovery of recombinant aprotinin, a trypsin inhibitor, with removal of native corn trypsin inhibitor from transgenic corn (Azzoni et al. in Biotechnol Bioeng 80:268–276, 2002). When expression is targeted to corn grain fractions, dry milling can separate germ and endosperm fractions. Hence, only the product-containing fraction needs to be extracted, reducing the cost of extraction and the impurity level of the extract. Selective extraction conditions can reduce impurity levels to the point that low-cost adsorbents can result in relatively high purity levels. In this work, we attempted to achieve comparable purity with these lower cost methods. We replaced whole grain extraction and purification of recombinant aprotinin with sequential trypsin affinity and IMAC steps with an alternative of germ fraction extraction and purification with ion exchange and hydrophobic interaction chromatography (HIC). Using germ extraction at acidic pH supplemented with heat precipitation to remove additional host proteins resulted in a higher specific activity feed to the chromatographic steps. The cation exchange step provided 7.6× purification with 76.4% yield and no sodium dodecyl sulfate–polyacrylamide gel electrophoresis detectable native corn trypsin inhibitor. After the HIC step (2.7× step purification with 44.0% yield), the final product had a specific activity that was 75.3% of that of the affinity-purified aprotinin.  相似文献   

4.
Integrated designs of chromatographic processes for purification of biopharmaceuticals provides potential gains in operational efficiency and reductions of costs and material requirements. We describe a combined method using screening and in silico algorithms for ranking chromatographic steps to rapidly design orthogonally selective integrated processes for purifying protein therapeutics from both process- and product-related impurities. IFN-α2b produced in Pichia pastoris containing a significant product variant challenge was used as a case study. The product and product-related variants were screened on a set of 14 multimodal, ion exchange, and hydrophobic charge induction chromatography resins under various pH and salt linear gradient conditions. Data generated from reversed-phase chromatography of the fractions collected were used to generate a retention database for IFN-α2b and its variants. These data, in combination with a previously constructed process-related impurity database for P. pastoris, were input into an in silico process development tool that generated and ranked all possible integrated chromatographic sequences for their ability to remove both process and product-related impurities. Top-ranking outputs guided the experimental refinement of two successful three step purification processes, one comprising all bind-elute steps and the other having two bind-elute steps and a flowthrough operation. This approach suggests a new platform-like approach for rapidly designing purification processes for a range of proteins where separations of both process- and product-related impurities are needed.  相似文献   

5.
Crystallization is the primary rate-limiting step in protein structure determination. It has been our experience over approximately 10 years that crystals are obtained in about 20% of the proteins attempted and that only about 10% of these crystals are sufficiently well ordered to permit atomic resolution structure analysis. In attempts to overcome this limitation, we have investigated the effect on crystallization of microheterogeneity in a protein regarded as pure by conventional criteria. Creatine kinase was purified from rabbit skeletal muscle and crystallized from methylpentanediol. The protein appeared to be nearly pure judging by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high specific activity. The crystals that were obtained were of poor quality, and an extensive survey of precipitants, crystallization conditions, and additives failed to discover conditions from which usable crystals could be obtained. The enzyme was then subjected to a series of further purification steps. After each purification step, the quality of the crystals obtained under almost identical conditions improved. The final purification step was flat-bed isoelectric focusing. Crystals grown from focused creatine kinase are well ordered and diffract to approximately 3-A resolution.  相似文献   

6.
Expression in transgenic plants is potentially one of the most economical systems for large-scale production of valuable peptide and protein products. However, the downstream processing of recombinant proteins produced in plants has not been extensively studied. In this work, we studied the extraction and purification of recombinant aprotinin, a protease inhibitor used as a therapeutic compound, produced in transgenic corn seed. Conditions for extraction from transgenic corn meal that maximize aprotinin concentration and its fraction of the total soluble protein in the extract were found: pH 3.0 and 200 mM NaCl. Aprotinin, together with a native corn trypsin inhibitor (CTI), was captured using a tryspin-agarose column. These two inhibitors were separated using an agarose-IDA-Cu2+ column that proved to efficiently absorb the CTI while the recombinant aprotinin was collected in the flowthrough with purity of at least 79%. The high purity of the recombinant aprotinin was verified by SDS-PAGE and N-terminal sequencing. The overall recombinant aprotinin recovery yield and purification factor were 49% and 280, respectively. Because CTI was also purified, the recovery and purification process studied has the advantage of possible CTI co-production. Finally, the work presented here introduces additional information on the recovery and purification of recombinant proteins produced in plants and corroborates with past research on the potential use of plants as biorreactors.  相似文献   

7.
The increasing interest in the structural arrangements and functional interdependencies of individual modules within large multidomain proteins requires the development of new methods allowing efficient production and purification of large human proteins. Heterologous expression in bacteria is still the most convenient and widely-used approach. However, most of the existing tools are not well suited to expression of cysteine-rich proteins in a native-like soluble form, and with the increasing protein size refolding may result in obtaining non-native conformations or improper disulfide bridging pattern. Here, we present an efficient method of expression and purification of muskelin, a large, multidomain, cysteine-rich eukaryotic protein involved in cell adhesion and regulation of cytoskeleton dynamics. Using a broad range of purification and solubility tags, expression strains and conditions we optimized the procedure to acquire a natively folded protein of crystallization-scale quantity and purity. The correct protein conformation and disulfide bonding were anticipated from the results of circular dichroism spectra and Ellman’s assay. Successful crystallization trials are a step towards muskelin crystal-structure determination, while the optimized expression and purification procedure can easily be applied to produce other eukaryotic proteins in the bacterial expression system.  相似文献   

8.
Bulk protein crystallization, unlike small molecule crystallization, has found very limited use in biopharmaceutical manufacture. Most work in this area targets obtaining single large crystals for molecular structure determination by crystallography. Design and optimization of bulk crystallization for protein recovery and purification is much less common, and requires a mathematical model for analysis of laboratory data suitable for scale-up purposes. Traditionally, the crystal size distribution and method of moments is used to characterize the crystallization process. A simpler method is presented in this paper that utilizes the desupersaturation curve. The method uses an approach that does not require expensive instrumentation or characterization of the seed crystal size distribution. The method is extended to allow determination of both the mass deposition rate constant and the growth rate order from a single desuperaturation curve. Experimental data for the bulk crystallization of ovalbumin are used to validate the method. The rate constants and rate order obtained using the new method compare well with literature values. Scale-up is illustrated by prediction of the impact of changes in seed mass on protein crystallization. This new method offers a straightforward and low-cost alternative to traditional methods for the analysis and scale-up of protein crystallization data.  相似文献   

9.
In order to understand the structural basis of charge differences among enzyme variants without undertaking purification and sequencing of the protein, an original approach was developed. The approach is applicable to any enzyme or protein provided that there is a specific staining procedure. This consists, as a first step, in the projection of electrophoretically obtained mobility values versus pI of all variants into a two-dimensional profile. In a second step, starting from the most common variant, various theoretical possibilities of substitutions are envisaged, taking into consideration the pH of the electrophoretic conditions, pI of the variants and range of variations of the pK values of several amino acid side chains. In a third step, verification of the theoretical data is obtained through comparative protein titration curves by combined isoelectrofocusing-electrophoresis of several pairs of relevant variants. The validity of this approach is tested on the highly polymorphic carboxylesterase B enzyme of Escherichia coli and is found to provide valuable information.  相似文献   

10.
Biacore technology was used to develop an affinity purification method and screen cocrystallization conditions for the chemokine receptor CCR5. We characterized the binding of nine HIV gp120 variants and identified a truncated construct (YU2DV1V2) that bound CCR5 independent of CD4. This construct was used in an affinity purification step to improve the activity of detergent-solubilized receptor by approximately 300%. The biosensor was also used to screen receptor binding activity automatically under 50 different crystallization conditions. We found that high-molecular-weight polyethylene glycols (PEGs 4,000 and 8,000 Da) most often stabilized the receptor and improved complex formation with potential cocrystallization partners such as conformationally sensitive monoclonal antibodies and gp120. Our results show how biosensors can provide unique insights into receptor purification methods and reveal the effects of crystallization conditions on complex formation. Importantly, these methods can be readily applied to other systems.  相似文献   

11.
Aprotinin is a Kunitz-type inhibitor with a relatively broad specificity. It has been shown to be clinically useful for the management of hemorrhagic complications. In this report, small ubiquitin-related modifier (SUMO) linked with a hexa-histidine tag was used as a fusion partner for the production of recombinant aprotinin and a human aprotinin analogue (cloned form human cDNA library). Both fusion proteins were overexpressed mainly as inclusion bodies in Escherichia coli and accounted for approximately 28% of the total cell proteins. After purification by Ni-Sepharose affinity chromatography and renaturation, the fusion proteins were cleaved with SUMO protease 1. Aprotinin and its analogue were separated from the fusion partner by the subtractive chromatography using Ni-Sepharose and then further purified with CM-cellulose. Kinetic studies demonstrated that the amidolytic activity of plasmin was competitively inhibited by recombinant aprotinin with a Ki of 8.6 ± 2.4 nM, which was similar to the Ki (7.5 ± 2.7 nM) of natural aprotinin. The Ki of human aprotinin analogue was 22.7 ± 6.5 nM. The expression strategy described in this study allows convenient high yield and easy purification of small recombinant protease inhibitors with complete native sequences.  相似文献   

12.
A -hydantoinase from Thermus sp. was overexpressed in Escherichia coli and purified to homogeneity for subsequent crystallization. The purification was performed with hydrophobic interaction chromatography as the capture step followed by anion-exchange chromatography and gel permeation chromatography as intermediate purification and polishing steps, respectively. The hydrophobic interaction step was done in fluidized bed mode in a laboratory-scale Streamline column made from conventional laboratory equipment. The whole purification protocol could be finished within one day. The purified enzyme crystallizes. The crystals are suitable for X-ray protein structure analysis and diffract to at least 2.3 Å resolution. Complete data sets have been measured up to 2.6 Å resolution. The X-ray structure is currently being solved.  相似文献   

13.
The application of preferential crystallization is at present limited to conglomerate forming systems, which cover only a minor part of chiral substances. In this paper, a hybrid process is proposed that extends the applicability of the preferential crystallization principle to the more common racemic compound forming systems. It comprises a preliminary (e.g., chromatographic) enantiomeric enrichment step and preferential crystallization to finally produce the desired pure enantiomer(s). The applicability of preferential crystallization to racemic compounds is demonstrated on the example of mandelic acid as a model system. Direct monitoring of the separation progress is performed using combined online polarimetry and online density measurements. A cyclic crystallization process, which provides alternating the pure mandelic acid enantiomer and the racemic compound, is feasible and allows the resolution of rac-mandelic acid as part of the proposed hybrid approach.  相似文献   

14.

Background

Rasburicase (Fasturtec® or Elitek®, Sanofi-Aventis), the recombinant form of urate oxidase from Aspergillus flavus, is a therapeutic enzyme used to prevent or decrease the high levels of uric acid in blood that can occur as a result of chemotherapy. It is produced by Sanofi-Aventis and currently purified via several standard steps of chromatography. This work explores the feasibility of replacing one or more chromatography steps in the downstream process by a crystallization step. It compares the efficacy of two crystallization techniques that have proven successful on pure urate oxidase, testing them on impure urate oxidase solutions.

Methodology/Principal Findings

Here we investigate the possibility of purifying urate oxidase directly by crystallization from the fermentation broth. Based on attractive interaction potentials which are known to drive urate oxidase crystallization, two crystallization routes are compared: a) by increased polymer concentration, which induces a depletion attraction and b) by decreased salt concentration, which induces attractive interactions via a salting-in effect. We observe that adding polymer, a very efficient way to crystallize pure urate oxidase through the depletion effect, is not an efficient way to grow crystals from impure solution. On the other hand, we show that dialysis, which decreases salt concentration through its strong salting-in effect, makes purification of urate oxidase from the fermentation broth possible.

Conclusions

The aim of this study is to compare purification efficacy of two crystallization methods. Our findings show that crystallization of urate oxidase from the fermentation broth provides purity comparable to what can be achieved with one chromatography step. This suggests that, in the case of urate oxidase, crystallization could be implemented not only for polishing or concentration during the last steps of purification, but also as an initial capture step, with minimal changes to the current process.  相似文献   

15.
目的:找寻适用于脂联素全序列蛋白的结晶条件,为解析其空间结构奠定基础,从而研究脂联素聚合体的内在构成模式,为开发高活性脂联素类衍生细胞因子提供参考。方法:首先构建脂联素全序列蛋白的真核表达载体,对其进行诱导表达,然后通过经亲和层析和凝胶过滤分离纯化后,得到高纯度的脂联素全序列蛋白,最后尝试使用坐滴法和悬滴法以及多种温度环境和结晶液条件,从而找寻适于脂联素全序列蛋白质的结晶条件。结果:通过纯化后的脂联素蛋白纯度可以达到91.3%,在溶液中的粒径分布于2 nm到4 nm。在线性变温条件下(24 h内,由277 K线性升温至313 K,再线性降温至277 K),通过悬滴法于48 h可获得脂联素全序列蛋白的针状晶体。结论:本研究选择真核载体,以亲和层析和凝胶过滤为分离纯化手段,得到了纯度高,粒径均一的脂联素全序列蛋白。随后通过尝试多种结晶方法、条件和环境,初步确定获得脂联素全序列蛋白晶体的条件,为后续获得高质量单晶提供了参考。  相似文献   

16.
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. To further examine the issue of purity in macromolecule crystallization, this study investigates the effect of the protein impurities, avidin, ovalbumin, and conalbumin at concentrations up to 50%, on the solubility, crystal face growth rates, and crystal purity of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the ?110? and ?101? lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.  相似文献   

17.
We used a novel approach to affinity purify human erythropoietin (hEPO) following its secretion from Drosophila melanogaster S2 cells. Immobilized metal affinity purification of hEPO was optimized using a two-step serial statistical optimization strategy. After determining the elution conditions (based on preliminary batch-type purification experiments), the first optimization step considered three purification factors; resin, equilibrium, and washing. The results of this analysis showed that the resin amount was the major factor influencing yield and purity in both model equations and the washing factor lowered the confidence limits of the acquired model equations. The washing conditions were then set based on the results of the first step optimization and the second step then optimized three factors; resin, equilibrium, and elution. The yield and purity of hEPO were then compared following purification using three different approaches; batch-type purification based upon the conditions determined by serial statistical optimization, batch-type purification performed in preliminary experiments, and FPLC column chromatography-type purification. We found that the serial statistical optimization approach provided the best combination of yield and purity. These findings indicate that serial statistical optimization strategies can be successfully employed for immobilized metal affinity protein purification using either batch-type or column approaches.  相似文献   

18.
Expanded bed absorption chromatography (EBA) was used to improve and simplify the purification of several wheat recombinant proteins. Binding and elution conditions were set to allow the purification of the over expressed protein in a single step. In comparison with our previous multi step protocol, same purity was obtained while EBA required less time (one day instead of five) and gave a higher yield (63% instead of 10%). This new procedure was then used for the successful purification of five other wheat ns-LTP. Despite their important polymorphism (identity from 44 to 97 %-pHi from 8 to 10), the EBA protocol allowed their purification in a single step.  相似文献   

19.
Process development and optimization studies were performed in order to improve the purification process of (rhIFN-gamma). The objective was to generate material with higher purity and quantity. An in-process control screening was developed to obtain the optimal condition for column chromatographic purification by measuring LPS, nucleic acids, rhIFN- gamma, monomer and its covalent dimers. A new resin screening method was applied to select optimal resin for each of the chromatographic columns. The resulting process used Butyl and Q-Sepharose, refolding and SP-Sepharose for purification of IFN-gamma. Effects of different process conditions such as cell lysis, removal of impurity and oxygen concentration were evaluated. Removal of impurities was evaluated by washing of inclusion bodies with 1% Triton X-100 and 3M urea and different chromatography steps. The results reveal that Triton removed about 43% of the LPS but urea had no effect on removal of nucleic acids and LPS. Further analysis show that removal of impurities by column chromatography decreases aggregation and increases the process yield. Oxygen concentration was identified as parameter that could have a significant impact on covalent dimers formation, as an unacceptable pharmaceutical form of rhIFN-gamma. On the basis of small-scale studies, optimum operating conditions were chosen and the purification process was successfully scaled-up to a pilot scale process with step yield and product quality that were better than previous reports.  相似文献   

20.
Aprotinin is a protease inhibitor found in bovine organs and used as a valuable human therapeutic compound. In this work, a process for the recovery of aprotinin from insulin industrial process effluent via affinity adsorption on immobilized trypsin and chymotrypsin was developed. First, process conditions were set as a result of a study of the effects of pH and ionic strength on pure aprotinin adsorption and desorption utilizing an experimental design methodology. The best conditions obtained with immobilized trypsin as the ligand were adsorption at 0.018 M NaCl and pH 8.7 and desorption at 0.018 M NaCl and pH 2.1. For immobilized chymotrypsin, the best conditions were adsorption at 0.582 M NaCl and pH 8.0 and desorption at 0.582 M NaCl and pH 2.1. Recovery of the inhibitor from the effluent was carried out utilizing a two-step process: trypsin-agarose adsorption followed by chymotrypsin-agarose adsorption. Analysis of the chromatographic fractions by trypsin and chymotrypsin inhibition and capillary electrophoresis assays strongly suggested that the recovered inhibitor is aprotinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号