首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
l-Galactono-1,4-lactone (GalL) dehydrogenase (GLDH) is an enzyme that catalyzes the last step of l-ascorbate (AsA) biosynthesis in plants. To re-evaluate the importance of the enzyme and the possibility of manipulating the AsA content in plants, a cDNA encoding GLDH from sweet potato was introduced into tobacco plants by Agrobacterium-mediated transformation under the control of a CaMV 35S promoter. Protein blot analysis revealed the elevation of GLDH protein contents in three GLDH-transformed lines. Furthermore, these transgenic lines showed 6- to 10-fold higher GLDH activities in the roots than the non-transformed plants, SR1. Despite the elevated GLDH activity, the AsA content in the leaves did not change in all lines; i.e., the AsA content in GLDH-transformed lines was 3–7 μmol g−1 FW, comparable to that in the non-transformed plants. Incubation of leaf discs in a GalL solution led to a rapid 2- to 3-fold increase in the AsA content in both GLDH-transformed and non-transformed plants in the same manner. These results suggest that the supply of GalL is a crucial factor for determining the AsA pool size and that the upstream genes in the AsA biosynthetic pathway are responsible for enhancing the AsA content in plants.  相似文献   

2.
N-Acetyl-L-glutamate (NAG), the activator of mitochondrial carbamoyl phosphate synthetase (CPS), is demonstrated by several methods, including a new HPLC assay, in the brain of mammals and of chicken. The brain levels of NAG are 200–300 times lower than the levels of N-acetyl-l-aspartate (NAA), and are similar to the levels of NAG in rat liver. The NAG levels in chicken liver are very low. Although NAG is mitochondrial in the liver, it is cytosolic in brain. Using enzyme activity and immuno assays we did not detect CPS in brain (detection limit, 12.5 g/g brain), excluding that brain NAG is involved in citrullinogenesis. The regional distribution of brain NAG differs from that of NAA and resembles that of N-acetyl-l-aspartyl-l-glutamate (NAAG), suggesting that NAG and NAAG are related. NAG might be involved in the modulation of NAAG degradation.Special issue dedicated to Dr. Santiago Grisolía  相似文献   

3.
A significant improvement in the production of l-ribulose from inexpensive and commercially available starting materials, l-arabinose and sodium aluminate, is demonstrated. This has facilitated expeditious access to gram-scale quantities of l-ribulofuranoside derivatives.  相似文献   

4.
Two systems for l-glutamate transport were found in Salmonella typhimurium LT-2 GltU+ (glutamate utilization) mutants. The first one is similar to the glt system previously described in Escherichia coli; by transductional analysis the structural gene, gltS, coding for the transport protein was located at minute 80 of the chromosome as part of the operon gltC-gltS, and its regulator, the gltR gene, near minute 90; the gltS gene product transports both l-glutamate and l-aspartate, is sodium independent, and is -hydroxyaspartate sensitive. The second transport system, whose structural gene was called gltF and is located at minute 0, was l-glutamate specific, sodium independent, and -methylglutamate sensitive. Two aspartase activities occurred in S. typhimurium LT-2: the first one was present only in the GltU+ mutants, had a pH 6.4 optimum, was essential for both l-glutamate and l-aspartate metabolism, and mapped at minute 94, close to the ampC gene. The second one had a pH 7.2 optimum, could be induced by several amino acids, and thus may have a general role in nitrogen metabolism.  相似文献   

5.
Membrane boundl-glutamate decarboxylase (GAD) has been solubilized and partially purified from hog brain. The solubilized GAD appears to exist in two forms, and , differing in their size and electrophoretic mobility. The form has similar mobility as that of the soluble GAD in 7.5% and 5–25% gradient polyacrylamide gel electrophoresis suggesting that they are similar in size and charge. In addition, gene encoding for mouse brain GAD has been cloned and characterized. Mouse brain GAD cDNA consists of two DNA fragments with 1.6 and 1.0 Kb. The 1.6 and 1.0 Kb fragments contain 1657 and 974 bP, respectively. The significance of multiple forms of GAD is also discussed.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

6.
The major symptoms of Parkinson's disease (PD) are tremors, hypokinesia, rigidity, and abnormal posture, caused by degeneration of dopamine (DA) neurons in the substantia nigra (SN) and deficiency of DA in the neostriatal dopaminergic terminals. Norepinephrine, serotonin, and melanin pigments are also decreased and cholinergic activity is increased. The cause of PD is unknown. Increased methylation reactions may play a role in the etiology of PD, because it has been observed recently that the CNS administration of S-adenosyl-l-methionine (SAM), the methyl donor, caused tremors, hypokinesia, and rigidity; symptoms that resemble those that occur in PD. Furthermore, many of the biochemical changes seen in PD resemble changes that could occur if SAM-dependent methylation reactions are increased in the brain, and interestingly,l-DOPA, the most effective drug used to treat PD, reacts avidly with SAM. So methylation may be important in PD; an idea that is of particular interest because methylation reactions increase in aging, the symptoms of PD are strikingly similar to the neurological and functional changes seen in advanced aging, and PD is age-related. For methylation to be regarded as important in PD it means that, along with its biochemical reactions and behavioral effects, increased methylation should also cause specific neuronal degeneration. To know this, the effects of an increase in methylation in the brain were studied by injecting SAM into the lateral ventricle of rats. The injection of SAM caused neuronal degeneration, noted by a loss of neurons, gliosis, and increased silver reactive fibers in the SN. The degeneration was accompanied with a decrease in SN tyrosine hydroxylase (TH) immunoreactivity, and degeneration of TH-containing fibers. At the injection site in the lateral ventricle it appears that SAM caused a weakening or dissolution of the intercellular substances; observed as a disruption of the ependymal cell layer and the adjacent caudate tissues. SAM may also cause brain atrophy; evidenced by the dilation of the cerebral ventricle. Most of the SAM-induced anatomical changes that were observed in the rat model are similar to the changes that occur in PD, which further support a role of SAM-dependent increased methylation in PD.  相似文献   

7.
Synthesis and application of dipeptides; current status and perspectives   总被引:1,自引:0,他引:1  
The functions and applications of l-α-dipeptides (dipeptides) have been poorly studied compared with proteins or amino acids. Only a few dipeptides, such as aspartame (l-aspartyl-l-phenylalanine methyl ester) and l-alanyl-l-glutamine (Ala-Gln), are commercially used. This can be attributed to the lack of an efficient process for dipeptide production though various chemical or chemoenzymatic method have been reported. Recently, however, novel methods have arisen for dipeptide synthesis including a nonribosomal peptide-synthetase-based method and an l-amino acid α-ligase-based method, both of which enable dipeptides to be produced through fermentative processes. Since it has been revealed that some dipeptides have unique physiological functions, the progress in production methods will undoubtedly accelerate the applications of dipeptides in many fields. In this review, the functions and applications of dipeptides, mainly in commercial use, and methods for dipeptide production including already proven processes as well as newly developed ones are summarized. As aspartame and Ala-Gln are produced using different industrial processes, the manufacturing processes of these two dipeptides are compared to clarify the characteristics of each procedure.  相似文献   

8.
The thermophilic phototrophic prokaryote, Chloroflexus aurantiacus was shown to contain high constitutive l-threonine (l-serine) deaminating activity. Separation of cellular proteins by DE 52-cellulose chromatography and by polyacrylamide gel electrophoresis with subsequent activity staining of the gels yielded two bands, one representing an isoleucine-sensitive, the other one an isoleucine-insensitive form of l-threonine dehydratase. Both enzymes had a molecular weight of 120,000 but were distinguished by their different affinities to the two substrates, l-threonine and l-serine.Abbreviations SDH l-serine dehydratase - TDH l-threonine dehydratase  相似文献   

9.
Yeom SJ  Ji JH  Yoon RY  Oh DK 《Biotechnology letters》2008,30(10):1789-1793
Geobacillus thermodenitrificans, with a double-site mutation in L: -arabinose isomerase, produced 95 g L-: ribulose l(-1 ) from 500 g L: -arabinose l(-1) under optimum conditions of pH 8, 70 degrees C, and 10 units enzyme ml(-1) with a conversion yield of 19% over 2 h. The half-lives of the mutated enzyme at 70 and 75 degrees C were 35 and 4.5 h, respectively.  相似文献   

10.
The fluorescence anisotropy (r) of diphenylhexatriene (DPH) was measured in different preparations (bovine spinal cord phosphatidylserine liposomes, rat brain microsomes, liposomes made with rat brain microsomal lipid having different phospholipid:cholesterol ratios) at temperatures ranging from 10° to 55°C. Phosphatidylserine liposomes exhibited an exponential relationship of rversus temperature, whereas the relationship shown by microsomes and liposomes prepared with microsomal lipid extracts was a linear one. The removal of protein and high phospholipid:cholesterol ratios decreased the slope of the lines (fluidity increased), although the intercept was unaffected. This means that differences were better appreciated at high temperatures and were well evident at 37°C. Acetyl-l-carnitine decreased r in rat brain microsomes and in liposomes made with microsomal lipids with different phospholipid:cholesterol ratios. The fluidifying effect of acetyl-l-carnitine was mild but statistically significant and could explain, at least in part, the data reported in the literature of acetyl-l-carnitine acting on some parameters affected by ageing. Besides, acetyl-l-carnitine seemed to oppose the changes of viscosity due to lipid peroxidation, which has been reported to increase in ageing and dementia.l-carnitine shares the properties of its acetyl ester, but only in part.Abbreviations DPH diphenylhexatriene - HEPES 4-(2-hydroxyethyl-l-piperazineethansulfonic) acid - r fluorescence anisotropy - SHB sucrose-HEPES-buffer (0.32 M sucrose, 2 mM HEPES, pH 7.0)  相似文献   

11.
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins.  相似文献   

12.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

14.
Summary The presence of an enzyme activity which hydrolyzes glycyl-d-aspartate was found in the homogenates of pig kidney cortex. The activity was inhibited by metal chelating agents and cilastatin, suggesting that the enzyme was a cilastatin-sensitive metallo-peptidase. Of the two hydrolysis products,d-aspartate was found to be less accumulated than glycine. The fate ofd-aspartate was, therefore, examined and the amino acid was found to be converted tol-aspartate,l-alanine and pyruvate, in the presence ofl-glutamate. Experiments with enzyme inhibitors suggested that the conversion involvedd-aspartate oxidase, aspartate aminotransferase and alanine aminotransferase as well as decarboxylation of oxaloacetate produced fromd-aspartate. All the results indicate that the enzymes in the pig kidney can liberate thed-aspartyl residue in the peptide and convert it to the compounds readily utilizable. The finding suggests a probable metabolic pathway of thed-aspartate-containing peptide.  相似文献   

15.
Anl-amino-acid oxidase (EC 1.4.3.1) that catalyzes the oxidative deamination of twelvel-amino acids has been purified 21-fold and with 14% yield to electrophoretic homogeneity fromChlamydomonas reinhardtii cells by ammonium-sulfate fractionation, gel filtration through Sephacryl and Superose, anion-exchange chromatography and preparative electrophoresis in polyacrylamide gels. The native enzyme is a protein of 470 kDa and consists of eight identical or similarsized subunits of 60 kDa each. Optimum pH and temperature were 8.2 and 55° C, respectively, with a Q10 (45–55° C) of 1.7 and an activation energy of 45 kJ · mol–1. Its absorption spectrum showed, in the visible region, maxima at 360 and 444 nm, characteristic of a flavoprotein with a calculated flavin content of 7.7 mol FAD per mol of native enzyme. ApparentK m values of the twelvel-amino acids which can act as substrates ofl-amino-acid oxidase ranged between 31 M for phenylalanine and 176 M for methionine. The effect of several specific group reagents, chelating agents and bivalent cations on enzyme activity has also been studied.This work was supported by Grant 780-CO2-01 from CICYT, Spain. The skillful secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.  相似文献   

16.
Summary l-Galactose,d-arabinose, andl-fucose form six-membered rings with identical stereoconfigurations. However, onlyl-fucose can serve as the sole carbon and energy source of wild-typeEscherichia coli K-12. A mutant that can grow onl-galactose andd-arabinose was isolated by alternate selection on the two sugars. Thel-fucose pathway became inducible by all three sugars. Transduction into the mutant of the wild-type fuc+ region containing both the regulatory and structural genes abolished the novel growth abilities onl-galactose andd-arabinose, whereas transduction into the mutant of a fuc deletion abolished the growth abilities on all three sugars. Introduction of the wild-type fucR+ (which encodes the activator protein for the fuc regulon) on a multicopy plasmid depressed the growth abilities of the mutant onl-galactose andd-arabinose, but not onl-fucose. The results suggest that the effector specificity of the activator protein in the mutant was broadened. It is proposed that an adaptive response of an activator-controlled system is more likely than that of a repressor-controlled system to achieve fixation in a population, because the first variant to emerge in response to a novel metabolic demand has a good chance of having an altered specificity of regulation. Such a change entails little or no metabolic liability during the absence of the novel substrate. In contrast, the first variant of a negatively controlled system to emerge has an overwhelming chance of being the result of a random mutation that destroys repressor function. Although negatively controlled systems can be more opportunistic in exploiting new conditions than positively controlled systems, an adaptive change is less likely to become fixed because of the cost associated with gratuitous constitutive gene expression in the absence of the substrate.  相似文献   

17.
To facilitate the easier production of d-amino acids using N-carbamyl-d-amino acid amidohydrolase (DCase) in an immobilized form, we improved the enzymatic thermostability of highly soluble DCase-M3 of Ralstonia pickettii using directed mutagenesis. Six novel mutation sites were identified in this study, apart from several thermostability-related amino acid sites reported previously. The most thermostable mutant, in which the 12th amino acid had been changed from glutamine to leucine, showed a 7 °C increase in thermostability. Comparative characterization of the parental and mutant DCases showed that although there was a slight reduction in the oxidative stability of the mutants, their kinetic properties and high solubility were not affected. The mutated enzymes are expected to be applied to the development of a fully enzymatic process for the industrial production of d-amino acids.  相似文献   

18.
We studied the dose-response characteristics and the temporal profile of inhibition of brain nitric oxide (NO) synthase (NOS) elicited by i.v. administration of the NOS inhibitor nitro-l-arginine methyl ester (L-NAME). L-NAME was administered i.v. in awake rats equipped with a venous cannula. L-NAME was injected in cumulative doses of 5, 10, 20 and 40 mg/kg and rats were sacrificed 30 min after the last dose. NOS catalytic activity was assayed in forebrain cytosol as the conversion of [3H]l-arginine into [3H]l-citrulline. L-NAME attenuated brain NOS activity in a dose-dependent manner but enzyme activity could not be inhibited by more than 50%. After a single 20 mg/kg injection of L-NAME the inhibition of brain NOS activity was time dependent and reached a stable level at 2 hrs (52% of vehicle). Inhibition after a single injection was still present at 96 hrs, albeit to a lower magnitude. We conclude that intravenous administration of L-NAME in rats at concentrations commonly used in physiological experiments leads to a dose and time-dependent but partial inhibition of brain NOS catalytic activity. The finding that the inhibition persists for several days after a single administration is consistent with the hypothesis that nitro-L-arginine, the active principle of L-NAME, binds to NOS irreversibly.  相似文献   

19.
N-Acyl-D-glutamate amidohydrolase (D-AGase) was inhibited by 94 % when 1 mol/l N-acetyl-DL- glutamate was used as a substrate. The addition of 1 mM Co2+ stabilized D-AGase. Moreover, the substrate inhibition was weakened to 88% with the addition of 0.4 mM Co2+ to the reaction mixture. Although D-AGase is a zinc-metalloenzyme, the addition of Zn2+ from 0.01 to 10 mM did not increase the D-glutamic acid production in the saturated substrate. Under optimal conditions, 0.38 M D-glutamic acid was obtained from N-acyl-DL-glutamate with 100% of the theoretical yield after 48 h.  相似文献   

20.
Summary All fourCandida blankii isolates evaluated for growth in simulated bagasse hemicellulose hydrolysate utilized the sugars and acetic acid completely. The utilization ofd-xylose,l-arabinose and acetic acid were delayed by the presence ofd-glucose, but after glucose depletion the other carbon sources were utilized simultaneously. The maximum specific growth rate of 0.36 h–1 and cell yield of 0.47 g cells/g carbon source assimilate compared with published results obtained withC. utilis. C. blankii appeared superior toC. utilis for biomass production from hemicellulose hydrolysate in that it utilizedl-arabinose and was capable of growth at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号