首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent Pseudomonas species are characterized by the production of pyoverdin-type siderophores for Fe3+ acquisition in iron-limited environments. Since it produces a structurally specific pyoverdin, Pseudomonas putida strain BTP1 could represent a valuable tool in an attempt to correlate the structural features of these compounds with some specificity in their two main properties i.e. affinity for iron and recognition rate by other Pseudomonas strains. An uncommonly high affinity for iron of the pyoverdin synthetized by P. putida BTP1 was observed by comparing both the apparent stability constant and the decomplexation kinetic of its ferric complex with those of ferripyoverdins from other strains. On another hand, results from growth stimulation experiments and labeled ferripyoverdin uptake assays highlighted the very low recognition rate of BTP1 isopyoverdins by membrane receptors of foreign strains. By contrast, P. putida BTP1 was able to utilize a broad spectrum of structurally unrelated exogenous pyoverdins by means of multiple receptors that are likely constitutively expressed in its outer membrane. The unusual traits of its pyoverdin-mediated iron acquisition system should contribute to enlarge the ecological competence of Pseudomonas putida BTP1 in terms of colonization and persistence in the rhizosphere.  相似文献   

2.
Cadmium-resistant Pseudomonas putida GAM-1, which was able to grow in concentrations of CdCl2 as high as 7 mM, was isolated from soil in a rice paddy. This bacterium harbored a DNA plasmid of about 52 kilobases. The plasmid (pGU100) transformed Escherichia coli C600 to cadmium resistance. A cadmium-resistant transformant of E. coli C600 contained a plasmid corresponding to that seen in P. putida GAM-1. The transformant did not take up cadmium as well as P. putida GAM-1 did.  相似文献   

3.
4.
5.
We have previously shown that the beneficial filamentous fungus Trichoderma virens secretes the highly effective hydrophobin-like elicitor Sm1 that induces systemic disease resistance in the dicot cotton (Gossypium hirsutum). In this study we tested whether colonization of roots by T. virens can induce systemic protection against a foliar pathogen in the monocot maize (Zea mays), and we further demonstrated the importance of Sm1 during maize-fungal interactions using a functional genomics approach. Maize seedlings were inoculated with T. virens Gv29-8 wild type and transformants in which SM1 was disrupted or constitutively overexpressed in a hydroponic system or in soil-grown maize seedlings challenged with the pathogen Colletotrichum graminicola. We show that similar to dicot plants, colonization of maize roots by T. virens induces systemic protection of the leaves inoculated with C. graminicola. This protection was associated with notable induction of jasmonic acid- and green leaf volatile-biosynthetic genes. Neither deletion nor overexpression of SM1 affected normal growth or development of T. virens, conidial germination, production of gliotoxin, hyphal coiling, hydrophobicity, or the ability to colonize maize roots. Plant bioassays showed that maize grown with SM1-deletion strains exhibited the same levels of systemic protection as non-Trichoderma-treated plants. Moreover, deletion and overexpression of SM1 resulted in significantly reduced and enhanced levels of disease protection, respectively, compared to the wild type. These data together indicate that T. virens is able to effectively activate systemic disease protection in maize and that the functional Sm1 elicitor is required for this activity.  相似文献   

6.
Isolation of plasmid deoxyribonucleic acid from Pseudomonas putida.   总被引:14,自引:10,他引:4       下载免费PDF全文
Conditions suitable for reproducible recovery of covalently closed circular deoxyribonucleic acid from strains of Pseudomonas putida containing degradative plasmids (CAM, SAL, OCT, etc.) have been defined. These degradative plasmids could not be isolated by the usual procedure, whereas RP1, an R factor of the P group, present in the isogenic strain of P. putida, was isolated equally well by either the usual procedure or the modified procedure. Characterization by electron microscopy of RP1 deoxyribonucleic acid confirmed the molecular weight (about 40 X 10(6)) previously determined by sucrose gradient centrifugation.  相似文献   

7.
Systemic defense reactions induced in bean by the non-pathogenic Pseudomonas putida BTP1 strain reduced disease caused by Botrytis cinerea. Phenylalanine ammonialyase activity and the level of endogenous free salicylic acid were compared in plant growth-promoting rhizobacteria-treated versus control plants, but no significant differences were detected. Furthermore, no enhanced fungitoxicity was detected in methanolic leaf extracts, suggesting that accumulation of bean phytoalexins was not part of the stimulated defense mechanisms. However, BTP1-inoculated plants showed increased levels of both linoleic and linolenic acids. On this basis, we further investigated whether the lipoxygenase pathway, leading to antifungal phytooxylipins, could have been stimulated. Two key enzymatic activities of this metabolic route, namely lipoxygenase and hydroperoxide lyase, were significantly stimulated during the first four days after challenging BTP1-treated plants with the pathogen. This was observed in parallel with a more rapid consumption of the respective substrates of these enzymes, as revealed by measurements of endogenous concentrations of linolenic acid and their hydroperoxide derivatives. Moreover, headspace-gas chromatography analyses showed significantly higher concentrations of the fungitoxic final product Z-3-hexenal in leaves from BTP1-inoculated beans as compared with control plants. Taken together, these results strongly suggest that the oxylipin pathway can be associated with enhanced disease resistance induced in bean plants by nonpathogenic rhizobacteria.  相似文献   

8.
Pseudomonads are the only organisms so far known to produce two lipoamide dehydrogenases (LPDs), LPD-Val and LPD-Glc. LPD-Val is the specific E3 component of branched-chain oxoacid dehydrogenase, and LPD-Glc is the E3 component of 2-ketoglutarate and possibly pyruvate dehydrogenases and the L-factor of the glycine oxidation system. Three mutants of Pseudomonas putida, JS348, JS350, and JS351, affected in lpdG, the gene encoding LPD-Glc, have been isolated; all lacked 2-ketoglutarate dehydrogenase, but two, JS348 and JS351, had normal pyruvate dehydrogenase activity. The pyruvate and 2-ketoglutarate dehydrogenases of the wild-type strain of P. putida were both inhibited by anti-LPD-Glc, but the pyruvate dehydrogenase of the lpdG mutants was not inhibited, suggesting that the mutant pyruvate dehydrogenase E3 component was different from that of the wild type. The lipoamide dehydrogenase present in one of the lpdG mutants, JS348, was isolated and characterized. This lipoamide dehydrogenase, provisionally named LPD-3, differed in molecular weight, amino acid composition, and N-terminal amino acid sequence from LPD-Glc and LPD-Val. LPD-3 was clearly a lipoamide dehydrogenase as opposed to a mercuric reductase or glutathione reductase. LPD-3 was about 60% as effective as LPD-Glc in restoring 2-ketoglutarate dehydrogenase activity and completely restored pyruvate dehydrogenase activity in JS350. These results suggest that LPD-3 is a lipoamide dehydrogenase associated with an unknown multienzyme complex which can replace LPD-Glc as the E3 component of pyruvate and 2-ketoglutarate dehydrogenases in lpdG mutants.  相似文献   

9.
Innate defence mechanisms in plants can be triggered and enhanced by certain agents, which are referred to as inducers. Inducing resistance against a broad spectrum of pathogens in otherwise susceptible plants is seen as a potentially safer alternative to other methods of chemical control of plant diseases. Cerebrosides, which are glycosphingolipids extracted from various plant pathogens, have been reported as resistance elicitors in the rice‐pathogen system. In the present study, cerebroside elicited resistance against downy mildew disease (caused by Sclerospora graminicola) of pearl millet (Pennisetum glaucum) that was highly significant. The resistance was of systemic nature and the time required for the resistance to build up was from 2 days onwards. There was a significant yield enhancement due to disease suppression by cerebroside treatment. Promising results were obtained in a preliminary field trial.  相似文献   

10.
11.
An inducible phenylserine aldolase (L-threo-3-phenylserine benzaldehyde-lyase, EC 4.1.2.26), which catalyzes the cleavage of L-3-phenylserine to yield benzaldehyde and glycine, was purified to homogeneity from a crude extract of Pseudomonas putida 24-1 isolated from soil. The enzyme was a hexamer with the apparent subunit molecular mass of 38 kDa and contained 0.7 mol of pyridoxal 5' phosphate per mol of the subunit. The enzyme exhibited absorption maxima at 280 and 420 nm. The maximal activity was obtained at about pH 8.5. The enzyme acted on L-threo-3-phenylserine (Km, 1.3 mM), l-erythro-3-phenylserine (Km, 4.6 mM), l-threonine (Km, 29 mM), and L-allo-threonine (Km, 22 mM). In the reverse reaction, threo- and erythro- forms of L-3-phenylserine were produced from benzaldehyde and glycine. The optimum pH for the reverse reaction was 7.5. The structural gene coding for the phenylserine aldolase from Pseudomonas putida 24-1 was cloned and overexpressed in Escherichia coli cells. The nucleotide sequence of the phenylserine aldolase gene encoded a peptide containing 357 amino acids with a calculated molecular mass of 37.4 kDa. The recombinant enzyme was purified and characterized. Site-directed mutagenesis experiments showed that replacement of K213 with Q resulted in a loss of the enzyme activity, with a disappearance of the absorption maximum at 420 nm. Thus, K213 of the enzyme probably functions as an essential catalytic residue, forming a Schiff base with pyridoxal 5'-phosphate.  相似文献   

12.
The 1-phosphofructokinase (1-PFK, EC 2.7.1.56) from Pseudomonas putida was partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. In its kinetic properties, this enzyme resembled the 1-PFK's from other bacteria. With the substrates fructose-1-phosphate (F-1-P) and adenosine triphosphate (ATP) Michaelis-Menten kinetics were observed, the Km for one substrate being unaffected by a variation in the concentration of the other substrate. At pH 8.0, the Km values for F-1-P and ATP were 1.64 X 10(-4) M and 4.08 X 10(-4) M, respectively. At fixed concentrations of F-1-P and ATP, an increase in the Mg2+ resulted in sigmoidal kinetics. Activity was inhibited by ATP when the ratio of ATP:Mg2+ was greater than 0.5 suggesting that ATP:2 Mg2+ was the substrate and free ATP was inhibitory. Activity of 1-PFK was stimulated by K+ and to a lesser extent by NH4+ and Na+. The reaction rate was unaffected by 2 mM K2HPO4, pyruvate, phosphoenolpyruvate, adenosine monophosphate, adenosine 3',5'-cyclic monophosphate, fructose-6-phosphate, glucose-6-phosphate, 6-phosphogluconate, 2-keto-3-deoxy-6-phosphogluconate, or citrate. The results indicated that the 1-PFK from P. putida was not allosterically regulated by a number of metabolites which may play an important role in the catabolism of D-fructose.  相似文献   

13.
14.
Two toluene-sensitive mutants were generated from Pseudomonas putida IH-2000, the first known toluene-tolerant isolate, by Tn5 transposon mutagenesis. These mutants were unable to grow in the presence of toluene (log Pow 2.8) but they could grow in medium overlaid with organic solvents having a log Pow value higher than that of toluene such as p-xylene (log Pow 3.1), cyclohexane (log Pow 3.4) and n-hexane (log Pow 3.9). The Tn5 transposable element knocked out a cyoB-like gene in one mutant and a cyoC-like gene in the other mutant. Seven open reading frames were found in a 5.5-kb region containing the cyoB- and cyoC-like genes of strain IH-2000. ORFs 3–7 showed significant identity to the cyoABCDE gene products of Escherichia coli, but ORFs 1 and 2 showed no significant homology to any protein reported so far. The growth patterns of the Tn5 mutants with the inactivated cyo-like gene were similar to that of the wild-type strain in the absence of organic solvents, although the doubling times were slightly longer than that of the wild-type strain. Our findings indicate that cyo is an important gene for toluene tolerance, although its role is still unclear.  相似文献   

15.
The chromium resistance properties encoded by a natural plasmid recovered from the environment were investigated. A 200 kb plasmid was isolated by the exogenous plasmid isolation method. The plasmid conferred a chromate resistance phenotype (MIC 8 mmol l−1) to a chromate susceptible strain of Pseudomonas putida KT 2441 (MIC 0·5 mmol l−1). The resistant strain took up 50% less 51Cr than the isogenic susceptible strain of Ps. putida KT2441. In addition, the resistant strain expressed two new membrane proteins encoded by the plasmid, an outer membrane protein (molecular weight 60 000) and an inner membrane protein (molecular weight 35 000). The physiological significance of these proteins is under current investigation.  相似文献   

16.
17.
A toluene-resistant variant of Pseudomonas putida KT2442, strain TOL, was isolated after liquid cultivation under xylene followed by toluene for 1 month in each condition. Almost all the populations of the variant strain formed small but readily visible colonies under toluene within 24 h at 30°C. The toluene-resistant strain also showed an increase in resistance to some unrelated antibiotics. Several toluene-sensitive Tn5 mutants have been isolated from the toluene-resistant strain and showed various levels of sensitivity. Most of these mutations did not cause significant changes in antibiotic resistance; however, one of the mutants (TOL-4) was highly susceptible to both organic solvents and various antibiotics, especially β-lactams. Sequencing analysis revealed that the mutation in TOL-4 had been introduced into a gene that may encode a transporter protein of an efflux system. This efflux system is very similar to one of the multidrug efflux systems of Pseudomonas aeruginosa. These observations indicate that a multidrug efflux system plays a major role in the organic solvent resistance of P. putida TOL. However, several other genes may also be involved. Received: December 18, 1997 / Accepted: March 16, 1998  相似文献   

18.
The highly enantioselective arylacetonitrilase of Pseudomonas putida was purified to homogeneity using a combination of (NH4)2SO4 fractionation and different chromatographic techniques. The enzyme has a molecular weight of 412 kDa and consisted of approximately nine to ten identical subunits (43 kDa). The purified enzyme exhibited a pH optimum of 7.0 and temperature optimum of 40°C. The nitrilase was highly susceptible to thiol-specific reagents and metal ions and also required a reducing environment for its activity. These reflected the presence of a catalytically essential thiol group for enzyme activity which is in accordance with the proposed mechanism for nitrilase-catalyzed reaction. The enzyme was highly specific for arylacetonitriles with phenylacetonitrile and its derivatives being the most preferred substrates. Higher specificity constant (k cat/K m) values for phenylacetonitrile compared to mandelonitrile also revealed the same. Faster reaction rate achieved with this nitrilase for mandelonitrile hydrolysis was possibly due to the low activation energy required by the protein. Incorporation of low concentration (<5%) of organic solvent increased the enzyme activity by increasing the availability of the substrate. Higher stability of the enzyme at slightly alkaline pH and ambient temperature provides an excellent opportunity to establish a dynamic kinetic resolution process for the production of (R)-(−)-mandelic acid from readily available mandelonitrile.  相似文献   

19.
We genetically characterized the Pseudomonas putida mutS gene and found that it encodes a smaller MutS protein than do the genes of other bacteria. This gene is able to function in the mutS mutants of Escherichia coli and Bacillus subtilis. A P. putida mutS mutant has a mutation frequency 1,000-fold greater than that of the wild-type strain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号