首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated numerous mutants containing mutations in the salvage pathways of purine synthesis. The mutations cause deficiencies in adenine phosphoribosyltransferase (adeF), in hypoxanthine-guanine phosphoribosyltransferase (guaF), in adenine deaminase (adeC), in inosine-guanosine phosphorylase, (guaP), and in GMP reductase (guaC). The physiological properties of mutants containing one or more of these mutations and corresponding enzyme measurements have been used to derive a metabolic chart of the purine salvage pathway of Bacillus subtilis.  相似文献   

2.
3.
Sh M Kocharian 《Genetika》1977,13(7):1252-1259
Mutations of the resistance to 2,6-diaminopurine (apt), which affect adenine phosphoribosyltransferase, fail to permit the growth of Escherichia coli pur mutants (purine auxotrophs which cannot make inosine monophosphate de novo) on the medium with 2,6-diaminopurine (DAP) as the sole source of purines. Addition of a small amount of hypoxantine, but not guanine, stimulated the growth of mutants of pur apt and pur apt+ genotypes on the medium with DAP. The utilization of DAP as purine source in the presence of hypoxantine is blocked by mutations guaC (guanosine monophosphate reductase), add (adenosine deaminase) and pup (purine necleoside phosphorylase), suggesting that DAP are utilized via purine nucleoside phosphorylase and adenosine deaminase. The drm mutation (that increases the level of pentose-1-phosphate in the cell) does not activate the utilization of DAP. The results indicate that a step, that limits the utilization of DAP as the sole source of purines by pur mutants of E. coli, is the deamination of DAP nucleoside.  相似文献   

4.
5.
(1) The nucleotide sequence of a 1991 bp segment of DNA that expresses the GMP reductase (guaC) gene of Escherichia coli K12 was determined. (2) This gene comprises 1038 bp, 346 codons (including the initiation codon but excluding the termination codon), and it encodes a polypeptide of Mr 37,437 which is in good agreement with previous maxicell studies. (3) The sequence contains a putative promoter 102 bp upstream of the translational start codon, and this is immediately followed by a (G + C)-rich discriminator sequence suggesting that guaC expression may be under stringent control (4) The GMP reductase exhibits a high degree of sequence identity (34%) with IMP dehydrogenase (the guaB gene product) indicative of a close evolutionary relationship between the salvage pathway and the biosynthetic enzymes, GMP reductase and IMP dehydrogenase, respectively. (5) A single conserved cysteine residue, possibly involved in IMP binding to IMP dehydrogenase, was located within a region that possesses some of the features of a nucleotide binding site. (6) The IMP dehydrogenase polypeptide contains an internal segment of 123 amino acid residues that has no counterpart in GMP reductase and may represent an independent folding domain flanked by (alanine + glycine)-rich interdomain linkers.  相似文献   

6.
Purine nucleotide biosynthesis was studied in culture forms of Trypanosoma cruzi strain Y, Crithidia deanei (a reduviid trypanosomatid with an endosymbiote) and an aposymbiotic strain of C. deanei (obtained by curing C. deanei with chloramphenicol). Trypanosoma cruzi was found to synthesize purine nucleotides only fring incorporated into both adenine and guanine nucleotides. Similar results were obtained with guanine, indicating that this flagellate has a system for the interconversion of purine nucleotides. Crithidia deanei was able to synthesize purine and pyrimidine nucleotides from glycine ("de novo" pathway) and purine nucleotides from adenine and guanine ("salvage" pathway). Adenine was incorporated into both adenine and guanine nucleotides, while guanine was incorporated into guanine nucleotides only, indicating the presence of a metabolic block at the level of GMP reductase. The aposymbiotic C. deanei strain was unable to utilize glycine for the synthesis of purine nucleotides, although glycine was utilized for synthesizing pyrimidine nucleotides. These results suggest that the endosymbiote is implicated in the de novo purine nucleotide pathway of the C. deanei-endosymbiote complex. The incorporation of adenine and guanine by aposymbiotic C. deanei strain followed a pattern similar to that observed for C. deanei.  相似文献   

7.
The metabolism of some purine compounds to urate and their effects on de novo urate synthesis in chicken hepatocytes were investigated. The purines, listed in descending order of rates of catabolism to urate, were hypoxanthine, xanthine, inosine, guanosine, guanine, IMP, GMP, adenosine, AMP, and adenine. During a 1-h incubation period, conversion to urate accounted for more than 80% of the total quantities of guanine, guanosine, and inosine metabolized, but only 42% of the adenosine and 23% of the adenine metabolism. Adenine, adenosine, and AMP inhibited de novo urate synthesis [( 14C]formate incorporation into urate), whereas the other purines, especially guanine, guanosine, and GMP, stimulated de novo urate synthesis. When hepatocytes were incubated with glutamine and adenosine, AMP, guanine, guanosine, or GMP, the rates of de novo urate synthesis were lower than the additive effects of glutamine and the purine in separate incubations. Increasing phosphate concentrations had no effect on urate synthesis in the absence of added purines but, in combination with adenosine, AMP, guanosine, or GMP, increased urate synthesis. These results indicate that the ratio of adenine to guanine nucleotides and the interaction between substrates and purine nucleotides are involved in the regulation of urate biosynthesis in chicken liver.  相似文献   

8.
Mechanism of adenine toxicity in Escherichia coli   总被引:4,自引:3,他引:1       下载免费PDF全文
The mechanism of adenine toxicity in an hpt gpt strain of Escherichia coli that is extremely sensitive to adenine inhibition was investigated. Adenine-resistant derivatives had secondary mutations in adeninephosphoribosyltransferase or the purR repressor. Growth studies with various purine salvage pathway mutants and the ability of guanosine to prevent adenine toxicity indicated that adenine exerts its toxic effects by depleting guanine nucleotide pools. In the presence of adenine, ATP pools increased twofold in wild-type cells and stabilized after 5 min. In contrast, ATP pools continued to rise in hpt gpt cells up to 25 min and increased sevenfold after adenine addition. hpt gpt cells were shown to have higher levels of adeninephosphoribosyltransferase than did the wild-type cells. In response to adenine addition, GTP pools dropped three- to fourfold in all strains tested. Although GTP levels returned to near normal values in wild-type cells after 35 min, no restoration of GTP pools was observed in the hpt gpt strain during this period. Measurements of guanine pools before and after the addition of adenine indicated that guaninephosphoribosyltransferase plays an important role in maintaining GTP pools by converting the free guanine to GMP during guanine nucleotide depletion.  相似文献   

9.
GMP reductase (EC 1.6.6.8) is the only known metabolic step by which guanine nucleotides can be converted to the pivotal precursor of both adenine and guanine nucleotides. Human GMP reductase has been previously partially purified from erythrocytes and a chromosome 6-linked cDNA has been identified to correspond for encoding human GMP reductase. Here, we reported a distinct cDNA for human GMP reductase isoenzyme isolated from a human fetal brain library, and the GenBank accession number is AF419346. The deduced protein shows 90% identity with human GMP reductase reported (named GMPR1 compared with GMPR2 of this paper) and 69% with E. coli GMP reductase. Comparison of GMPR2 cDNA sequence with human genome indicates the corresponding gene spans about 6.6kb on chromosome 14, which encodes 348 amino acid residues. Northern hybridization analysis indicates a differential and disproportionate expression of mRNAs for GMPR1 and GMPR2, suggesting the existence of distinct molecular species of GMP reductase in human. The apparent Km of GMPR2 for NADPH and GMP are 26.6 and 17.4 microM, respectively. This is the first report suggesting the existence of two distinct types of human GMP reductase molecular species, which can be used to explain the bimodal saturation curve noted with the purified human erythrocyte GMP reductase.  相似文献   

10.
Derepression of the synthesis of inosine 5′-monophosphate (IMP) dehydrogenase and of xanthosine 5′-monophosphate (XMP) aminase in pur mutants of Escherichia coli which are blocked in the biosynthesis of adenine nucleotides and guanine nucleotides differs in two ways from derepression in pur mutants blocked exclusively in the biosynthesis of guanine nucleotides. (i) The maximal derepression is lower, and (ii) a sharp decrease in the specific activities of AMP dehydrogenase and XMP aminase occurs, following maximal derepression. From the in vivo and in vitro experiments described, it is shown that the lack of adenine nucleotides in derepressed pur mutants blocked in the biosynthesis of adenine and guanine nucleotides is responsible for these two phenomena. The adenine nucleotides are shown to play an important regulatory role in the biosynthesis of guanosine 5′-monophosphate (GMP). (i) They induce the syntheses of IMP dehydrogenase and XMP aminase. (The mechanism of induction may involve the expression of the gua operon.) (ii) They appear to have an activating function in IMP dehydrogenase and XMP aminase activity. The physiological importance of these regulatory characteristics of adenine nucleotides in the biosynthesis of GMP is discussed.  相似文献   

11.
Bacillus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosyltransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively.  相似文献   

12.
An attempt was made to explain the puzzling observation that in bacteria 2,6-diaminopurine can replace guanine for guanineless mutants and for xanthineless mutants (both of which can make adenosine monophosphate de novo) but not for nonexacting purine auxotrophs (which cannot make adenosine monophosphate de novo). The analogue failed to inhibit the growth of nonexacting purineless Bacillus subtilis MB-1356 growing on guanine. In fact, growth was somewhat stimulated. This eliminated a possible solution involving the inhibition of guanosine monophosphate reductase by a diaminopurine derivative. Sparing of guanine by diaminopurine was matched by an even greater sparing of adenine. Addition of a small amount of adenine to MB-1356 failed to allow unrestricted growth on diaminopurine, thus eliminating a possible solution requiring an adenine derivative for the initial deamination of diaminopurine to guanine. The same degree of sparing of adenine by diaminopurine was observed whether both purines were added together or whether the adenine was added 1 hr after diaminopurine. This eliminated the possibility that diaminopurine was wasted by a "dead-end" conversion in the absence of adenine. Consideration of these nutritional data led to the development of two additional explanations, which are examined by tracer methodology in the following paper.  相似文献   

13.
Adenine phosphoribosyltransferase mutants in Saccharomyces cerevisiae   总被引:4,自引:0,他引:4  
Mutants of Saccharomyces cerevisiae deficient in adenine phosphoribosyltransferase (A-PRT, EC 2,4,2,7) have been isolated following selection for resistance to 8-azaadenine in a prototrophic strain carrying the ade4-su allele of the gene coding for amidophosphoribosyltransferase (EC 2,4,2,14). The mutants were recessive and defined a single gene, apt1. They did not excrete purine when combined with ade4+. The mutants appeared to retain some A-PRT activity in crude extracts, and strains of the genotype ade2 apt1 responded to both adenine and hypoxanthine. Mutants deficient in adenine aminohydrolase (EC 3,5,4,2) activity, aah1, and hypoxanthine:guanine phosphoribosyltransferase (EC 2,4,2,8) activity, hpt1, were used to synthesize the genotypes apt1 hpt1 aah+ and apt1 hpt+ aah1. The absence of A-PRT activity in strains with these genotypes confirmed the hypothesis that the residual A-PRT activity of apt1 mutants was due to adenine aminohydrolase and hypoxanthine:guanine phosphoribosyltransferase acting in concert.  相似文献   

14.
15.
The interaction between NiCl, and nucleobases, nucleosides and nucleotides has been studied by UV-Vis difference spectrophotometry, graphite furnace atomic absorption spectrophotometry, IR spectroscopy and high pressure liquid chromatography using the technique of continuous variation. The proposed structures of the complexes formed were optimised and their electronic and vibrational spectra generated using the molecular modelling program HyperChem 5. Ni2+ reacts with guanine, 2'-dGMP, GMP, adenine and AMP to form 1:1 complexes Ni(Guanine)(H2O)5, Ni(2'-dGMP)(H2O)5, Ni(GMP)(H2O)5, Ni(Adenine)(H2O)5, and Ni(AMP)(H2O)5 respectively. In these complexes, Ni2+ is believed to be bonded to the N7 atom of adenine and guanine.  相似文献   

16.
Enzymes of Purine Metabolism in Mycoplasma mycoides subsp. mycoides   总被引:8,自引:8,他引:0       下载免费PDF全文
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides were proposed previously from studies of its usage of radioactive purines and pyrimidines. To interpret more fully the pattern of purine usage, we have assayed cell-free extracts of this organism for several enzymes associated with the salvage synthesis of purine nucleotides. M. mycoides possessed phosphoribosyltransferases for adenine, guanine, and hypoxanthine, purine nucleoside phosphorylase, GMP reductase, GMP kinase, adenylosuccinate synthetase, and adenylosuccinate lyase. Purine nucleoside kinase and adenosine deaminase were not detected. Examination of kinetic properties and regulation of some of the above enzymes revealed differences between M. mycoides and Escherichia coli. Most notable of these were the greater susceptibility of the enzymes from M. mycoides to inhibition by nucleotides and the more widespread involvement of GMP as an inhibitor. Observations on enzyme activities in vitro allow an adequate explanation of the capacity of guanine to provide M. mycoides with its full requirement for purine nucleotides.  相似文献   

17.
Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.  相似文献   

18.
The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines.  相似文献   

19.
In attempts to obtain GMP producing strains, Brevibacterium ammoniagenes was treated with UV, N.T.G. or D.E.S. as a mutagen. Adenine-guanine requiring mutants were obtained from an adenine-requiring mutant of Brev. ammoniagenes, KY 3482–9 and two of them, presumably adenine-xanthine requiring mutants, were then reverted to mutants which required only adenine for their growth.

Although these revertants were not able to accumulate a copious amount of GMP, most of them and of adenine-guanine requiring mutants produced larger amounts of IMP than the parent adenine-requiring strain.

Effects of Mn2+ and purine bases in the medium on IMP production by these mutants were examined and IMP productivities of these mutants were compared with the parent strain under optimal conditions.

These mutagenic treatments were thus proved to be effective for the increase of de novo IMP production by Brev. ammoniagenes mutants.

Brevibacterium ammoniagenes ATCC 6872 accumulates 5′-GDP and -GTP, or 5′-ADP and -ATP together with GMP or AMP in nucleotide fermentation by salvage synthesis.

With cell free extract of this strain, transphosphorylating reactions of AMP or GMP were investigated.

ATP-AMP transphosphorylating enzyme(s) was partially purified to 21.7 fold with acid treatment, salting-out and column chromatography.

In ATP-AMP and ATP-GMP transphosphorylating reactins, optimal conditions were decided such as for concentrations of enzyme, of MgCl2 and of phosphate donor, pH and cell age as the enzyme sources.

Specificities of phosphate donors and acceptors were examined with both the partially purified enzymes or the sonicate. AMP and GMP were phosphorylated by ATP rapidly, but IMP and XMP were not, therefore supporting our previous finding that Brev. ammoniagenes could not accumulated IDP, ITP, XDP and XTP in IMP and XMP fermentation, respectively.

Although ATP was the best donor for both AMP and GMP phosphorylations, other nucleoside triphosphates and PRPP were used as phosphate donors.

Furthermore, phosphorylation of ADP to ATP was investigated and possible mechanisms of nucleoside di- or triphosphates synthesis in the nucleotide fermentation were discussed.

From these results, it is suggested as a possible mechanism for nucleoside di- and triphosphate accumulation by Brev. Ammoniagenes, that a nucleoside monophosphate formed is phosphorylated to a nucleoside di-phosphate with ATP or other phosphate donors and then the nucleoside diphosphate is converted to a triphosphate with these phosphate donors.

Both AMP and GMP were transphosphorylated rapidly to the corresponding nucleoside-diphosphates and triphosphates by ATP and by other high energy phosphate compounds with cell free extracts of Brevibacterium ammoniagenes.

Some enzyme inhibitors, such as metals and PCMB were shown to inhibit the phosphorylations of AMP and GMP. Higher levels of ATP, ADP, GTP and GDP also inhibited the activity of the partially purified ATP-AMP transphosphorylating enzyme(s).

In guanine nucleotides fermentation by salvage synthesis with this strain, addition of these inhibitors to the medium increased the amounts of GMP and total guanine nucleotides accumulated.

On the contrary, supplement of xylene or of other organic solvents to the medium stimulated the accumulation of both GTP and total guanine compouuds in this fermentation. From enzymatic studies, these solvents are presumed to have the ability to change cell permeability.

Such findings give an effective method for controlling the amounts of nucleotides accumulated in these fermentations.  相似文献   

20.
Mechanisms of action of pyrazolopyrimidines in Leishmania donovani   总被引:2,自引:0,他引:2  
We investigated the antileishmanial actions of the pyrazolopyrimidines allopurinol (4-hydroxypyrazolo[3,4-d]pyrimidine), thiopurinol (4-thiopyrazolo[3,4-d]pyrimidine), and aminopurinol (4-aminopyrazolo[3,4-d]pyrimidine). These compounds affect several metabolic processes. The first is the inhibition of GMP reductase by the IMP analogues allopurinol ribonucleoside monophosphate and thipurinol ribonucleoside monophosphate which reduces the organism's ability to synthesize ATP from guanine. Second, interconversion of adenine nucleotides to guanine nucleotides, is curtailed by the inhibition of IMP dehydrogenase by these same IMP analogues. Third, the IMP analogues reduce intracellular UTP content. The fourth affect is increased catabolism of RNA and consequent reduction of protein synthesis. This latter effect is due to the adenine nucleotide analogues aminopurinol ribonucleoside mono-, di-, and/or triphosphates, metabolic products of both allopurinol and aminopurinol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号