首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ricin B (RTB), the lectin subunit of ricin, shows promise as an effective mucosal adjuvant and carrier for use in humans. In order to obtain a recombinant plant source of RTB that is devoid of the toxic ricin A subunit, we expressed RTB in Nicotiana tabacum. RTB was engineered with an N-terminal hexahistidine tag (His-RTB), which may affect protein stability. Lactose-affinity purification of His-RTB from leaves yielded three major glycosylated products of 32, 33.5 and 35 kDa. Their identity as RTB was verified by mass spectrometry and immunoblotting with anti-ricin antibodies. Functionality of His-RTB was confirmed by binding to asialofetuin, lactose and galactose.  相似文献   

2.
The B subunit (RTB) of ricin toxin is a galactose (Gal)−/N-acetylgalactosamine (GalNac)-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ) that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD), although only sub-domains 1α and 2γ retain functional lectin activity. As part of our ongoing effort to generate a comprehensive B cell epitope map of ricin, we report the characterization of three new RTB-specific monoclonal antibodies (mAbs). All three mAbs, JB4, B/J F9 and C/M A2, were initially identified based on their abilities to neutralize ricin in a Vero cell cytotoxicty assay and to partially (or completely) block ricin attachment to cell surfaces. However, only JB4 proved capable of neutralizing ricin in a macrophage apoptosis assay and in imparting passive immunity to mice in a model of systemic intoxication. Using a combination of techniques, including competitive ELISAs, pepscan analysis, differential reactivity by Western blot, as well as affinity enrichment of phage displayed peptides, we tentatively localized the epitopes recognized by the non-neutralizing mAbs B/J F9 and C/M A2 to sub-domains 2α and 2β, respectively. Furthermore, we propose that the epitope recognized by JB4 is within sub-domain 2γ, adjacent to RTB’s high affinity Gal/GalNAc CRD. These data suggest that recognition of RTB’s sub-domains 1α and 2γ are critical determinants of antibody neutralizing activity and protective immunity to ricin.  相似文献   

3.
Ricin toxin kills mammalian cells with notorious efficiency. The toxin’s B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin’s A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin’s individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHHs) that span the RTA-RTB interface, including four Tier 1 VHHs with IC50 values <1 nM. Crystal structures of each VHH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA’s F-G loop (mode 1), RTB’s subdomain 2γ (mode 2) or both (mode 3). VHHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin’s cytotoxic pathway.  相似文献   

4.
A comparative study of gelonin and A-chains of ricin, mistletoe lectin I and diphtheria toxin was undertaken. The effect of pH was studied on: a) the conformation of the proteins under study using intrinsic fluorescence; b) interaction of these proteins with ricin B-chain using gel-filtration. Structural stability of the proteins was assessed according to denaturing action of guanidine hydrochloride and temperature, and localization of tryptophan residues was determined using fluorescence quenching by I-, Cs+ and acrylamide. All investigated proteins were shown to undergo the conformational changes when a environment became acidic. In comparison with an intact protein--gelonin, the A-chains of ricin, a mistletoe lectin and a diphtheria toxin are less stable. At pH less than 5.0 tryptophan residues became more accessible to quencher and a positive charge of the surrounding area increases (in the case of gelonin it is negatively charged). No reliable interaction of a ricin B-chain with both gelonin and A-chain of diphtheria toxin was observed. The interaction of a ricin B-chain with a A-chain of mistletoe lectin I is weaker than that with ricin A-chain and is practically pH-independent.  相似文献   

5.
Ricin B (RTB), the non-toxic lectin subunit of ricin, is a promising mucosal adjuvant and carrier for use in humans. RTB fusion proteins have been expressed in tobacco hairy root cultures, but the secreted RTB component of these proteins was vulnerable to protease degradation in the medium. Moreover, castor bean purified RTB spiked into tobacco hairy root culture media showed significant degradation after 24 h and complete loss of product after 72 h. Aqueous two-phase extraction (ATPE) was tested for fast recovery of RTB not only to partially purify the protein but also to improve its stability. Two different polyethylene glycol (PEG)/salt/water systems including PEG/potassium phosphate and PEG/sodium sulfate, were studied. RTB was shown to be favorably recovered in PEG/sodium sulfate systems. Statistical analysis indicated that the ionic strength of the system and the sodium sulfate concentration were important in optimizing the partition coefficient of RTB. A selectivity of almost three could be achieved for RTB in optimized systems, and RTB partitioned in the PEG-rich phase exhibited extended stability. Therefore, ATPE was shown to be effective in initial recovery/purification and stabilization of RTB and may hold promise for other unstable secreted proteins from hairy root culture.  相似文献   

6.
The sequence coding for the viscumin (mistletoe lectin I, MLI) A-chain (MLA) was cloned from Viscum album genomic DNA with the use of synthetic primers. This yielded three recombinant (r) MLA variants differing in number of amino acid substitutions. The rMLA structure and properties were probed using monoclonal antibodies against native MLA. Native MLI B-chain (MLB) was shown to facilitate the rMLA folding. Native MLI and chimeric proteins consisting of rMLA and native MLB did not differ in cytotoxic effect on 3T3 fibroblastoid cells. Residues were identified that are located in the MLB-contacting region and have a considerable effect on the immunochemical and cytotoxic properties of rMLA.  相似文献   

7.
The crystal structure of the ribosome-inactivating protein (RIP) mistletoe lectin I (ML-I) from Viscum album has been solved by molecular replacement techniques. The structure has been refined to a crystallographic R-factor of 24.5% using X-ray diffraction data to 2.8 A resolution. The heterodimeric 63-kDa protein consists of a toxic A subunit which exhibits RNA-glycosidase activity and a galactose-specific lectin B subunit. The overall protein fold is similar to that of ricin from Ricinus communis; however, unlike ricin, ML-I is already medically applied as a component of a commercially available misteltoe extract with immunostimulating potency and for the treatment of human cancer. The three-dimensional structure reported here revealed structural details of this pharmaceutically important protein. The comparison to the structure of ricin gives more insights into the functional mechanism of this protein, provides structural details for further protein engineering studies, and may lead to the development of more effective therapeutic RIPs.  相似文献   

8.
The sequence coding for the viscumin (mistletoe lectin I, MLI) A-chain (MLA) was cloned from Viscum album genomic DNA with the use of synthetic primers. This yielded three recombinant (r) MLA variants differing in the number of amino acid substitutions. The rMLA structure and properties were probed using monoclonal antibodies against native MLA. Native MLI B-chain (MLB) was shown to facilitate the rMLA folding. Native MLI and chimeric proteins consisting of rMLA and native MLB did not differ in their cytotoxicity toward 3T3 fibroblastoid cells. Residues were identified that are located in the MLB-contacting region and have a considerable effect on the immunochemical and cytotoxic properties of rMLA.  相似文献   

9.
The effects of the lectins concanavalin A, WGA, ricin, abrin, and the mistletoe lectins from Viscum album MLI, MLII, and MLIII on the binding of ligands of the NMDA and sigma receptors in rat hippocampus synaptic plasma membranes were investigated. Binding of [3H]MK-801, [3H]glutamate, [3H]5,7-DCKA, and [3H]glycine to the membranes was decreased by 40-60% after addition of galactose-specific lectins (mistletoe lectins MLI, MLII, ricin, abrin) at concentrations of 0.01 mg/ml, but was not affected by the glucose- and mannose-specific lectin Con A, an acetylglucosamine-specific lectin WGA, or an acetylgalactosamine-specific lectin MLIII. The binding of [3H]SKF 10047 was decreased only in the presence of MLIII and did not change after addition of the other lectins. It is suggested that lectin-sensitive ligand binding sites of sigma- and NMDA receptors are located separately, and that the carbohydrate side chains of the sigma receptor do not participate in the modulation of the NMDA-receptor.  相似文献   

10.
The Centers for Disease Control and Prevention have listed the potential bioweapon ricin as a Category B Agent. Ricin is a so-called A/B toxin produced by plants and is one of the deadliest molecules known. It is easy to prepare and no curative treatment is available. An immunotherapeutic approach could be of interest to attenuate or neutralise the effects of the toxin. We sought to characterise neutralising monoclonal antibodies against ricin and to develop an effective therapy. For this purpose, mouse monoclonal antibodies (mAbs) were produced against the two chains of ricin toxin (RTA and RTB). Seven mAbs were selected for their capacity to neutralise the cytotoxic effects of ricin in vitro. Three of these, two anti-RTB (RB34 and RB37) and one anti-RTA (RA36), when used in combination improved neutralising capacity in vitro with an IC(50) of 31 ng/ml. Passive administration of association of these three mixed mAbs (4.7 μg) protected mice from intranasal challenges with ricin (5 LD(50)). Among those three antibodies, anti-RTB antibodies protected mice more efficiently than the anti-RTA antibody. The combination of the three antibodies protected mice up to 7.5 hours after ricin challenge. The strong in vivo neutralising capacity of this three mAbs combination makes it potentially useful for immunotherapeutic purposes in the case of ricin poisoning or possibly for prevention.  相似文献   

11.
A gene encoding the outer capsid glycoprotein (VP7) of simian rotavirus SA11, was genetically linked to the amino terminus of the ricin toxin B subunit (RTB) isolated from castor-oil plant (Ricinus communis) seeds. To assess fusion protein expression in plant cells, the VP7::RTB fussion gene was transferred into potato (Solanum tuberosum) cells by Agrobacterium tumefaciens-mediated transformation methods and transformed plants regenerated. The fusion gene was detected in transformed potato genomic DNA by polymerase chain reaction DNA amplification methods. Immunoblot analysis with anti-SA11 antiserum as the primary antibody verified the presence of VP7::RTB fusion protein in transformed potato tuber tissues. The plant-synthesized fusion protein bound RTB membrane receptors as measured by asialofetuin-enzyme-linked immunosorbent assay (ELISA). The ELISA results indicated that the VP7::RTB fusion protein was biologically active and made up approx 0.03% of total soluble transformed tuber protein. The biosynthesis of receptor binding VP7::RTB fusion protein in potato tissues demonstrates the feasibility of producing monomeric ricin toxin B subunit adjuvant-virus antigen fusion proteins in crop plants for enhanced immunity.  相似文献   

12.
Aqueous extracts of mistletoe (Viscum album L.) contain toxic proteins (lectins) MLI (viscumin), MLII, and MLIII. We previously cloned the gene encoding MLIII precursor. In the present study, a gene fragment encoding the carbohydrate-binding subunit of mistletoe toxic lectin MLIII was cloned and expressed in Escherichia coli cells. The structure and immunochemical properties of recombinant MLIII B-subunit were investigated using a panel of monoclonal antibodies against ML-toxins. Sugar-binding activity of recombinant MLIII B-subunit was determined by ELISA. Amino acid sequence analysis of the cloned MLIII compared with known mistletoe toxins and other ribosome inactivating type II proteins (ricin, abrin a, and nigrin b B-subunits) revealed essential features of the recombinant MLIIIB primary structure that could determine sugar specificity of the lectin as well as immunomodulating and anti-tumor properties of mistletoe extracts.Translated from Biokhimiya, Vol. 70, No. 3, 2005, pp. 378–389.Original Russian Text Copyright © 2005 by Pevzner, Agapov, Pfueller, Pfueller, Maluchenko, Moisenovich, Tonevitsky, Kirpichnikov.  相似文献   

13.
Onset of juvenile Type 1 diabetes (T1D) occurs when autoreactive lymphocytes progressively destroy the insulin-producing beta-cells in the pancreatic Islets of Langerhans. The increasing lack of insulin and subsequent onset of hyperglycemia results in increased damage to nerves, blood vessels, and tissues leading to the development of a host of severe disease symptoms resulting in premature morbidity and mortality. To enhance restoration of normoglycemia and immunological homeostasis generated by lymphocytes that mediate the suppression of autoimmunity, the non-toxic B chain of the plant AB enterotoxin ricin (RTB), a castor bean lectin binding a variety of epidermal cell receptors, was genetically linked to the coding region of the proinsulin gene (INS) and expressed as a fusion protein (INS–RTB) in transformed potato plants. This study is the first documented example of a plant enterotoxin B subunit linked to an autoantigen and expressed in transgenic plants for enhanced immunological suppression of T1D autoimmunity.  相似文献   

14.
H Franz  P Ziska    A Kindt 《The Biochemical journal》1981,195(2):481-484
Three lectins have been isolated from an extract of mistletoe (Viscum album) by affinity chromatography on partially hydrolysed Sepharose and human immunoglobulin- Sepharose. The lectins differ in molecular weight and sugar specificity (lectin I, mol.wt. 11500, D-galactose-specific; lectin II, mol.wt. 60000, both D-galactose- and N-acetyl-D-galactosamine-specific; lectin III, mol. wt. 50000, N-acetyl-D-galactosamine-specific). All three lectins react with human erythrocytes without specificity for the A, B, and O blood groups. In contrast with abrin and ricin the mistletoe lectins cannot be divided into "toxins" and "haemagglutinins".  相似文献   

15.
The complete primary structure of the A chain of mistletoe lectin III (ML3A), a type II ribosome-inactivating protein, was determined using proteolytic digests of ML3A, HPLC separation of the peptides, Edman degration and MALDI-MS. Based on our results, ML3A consists of 254 amino acid residues, showing a high homology to the A chain of isolectin ML1 with only 24 amino acid residue exchanges. A striking important structural difference compared with ML1A is the lack of the single N-glycosylation site in ML3A due to an amino acid exchange at position 112 (ML1A: NL112GS ==> ML3A: T112GS). The alignment of ML3A with the A chains of ML1, isoabrins, ricin D, Ricinus communis agglutinin and three lectins, identified from the Korean mistletoe Viscum album ssp. coloratum, demonstrates the rigid conservation of all amino acid residues, responsible for the RNA-N-glycosidase activity as reported for ricin D. In addition, the fully determined primary structure of ML3A will give further information about the biological mechanism of mistletoe lectin therapy.  相似文献   

16.
The A-subunit polypeptides of Shiga toxin, the Shiga-like toxins (SLTs), and the plant lectin ricin inactivate eucaryotic ribosomes by enzymatically depurinating 28S rRNA. Comparison of the amino acid sequences of the members of the Shiga toxin family and ricin revealed two regions of significant homology that lie within a proposed active-site cleft of the ricin A chain. In previous studies, these conserved sequences of the SLT-I and ricin A subunits have been implicated as active sites. To establish the importance of these regions of homology, we used site-directed mutagenesis to alter the A-subunit sequences of two members of the Shiga toxin family. Substitution of an aspartic acid for glutamic acid 166 of the Slt-IIA subunit decreased the capacity of the polypeptides to inhibit protein synthesis at least 100-fold in a cell-free translation system. However, this mutation did not prevent the expression of immunoreactive, full-length Slt-IIA. In addition, SLT-II holotoxin containing the mutated A subunit was 1,000-fold less toxic to Vero cells. Finally, site-directed mutagenesis was used to delete sequences encoding amino acids 202 through 213 of the Shiga toxin A subunit. Although this deletion did not prevent holotoxin assembly, it abolished cytotoxic activity.  相似文献   

17.
1. The haemagglutinating and toxic lectin from Viscum album L. (mistletoe) inhibits protein synthesis in a lysate of rabbit reticulocytes, with an ID50 (concentration giving 50% inhibition) of 2.6 microgram/ml. This effect is enhanced (ID50 0.21 microgram/ml) if the lectin is reduced with 2-mercaptoethanol. 2. The lectin inhibits protein synthesis also in BL8L cells in culture. Inhibition occurs after a lag time of 3 h. The ID50 is 7 ng/ml, and increases after reduction of the lectin. 3. This and the gross lesions observed in rats poisoned with V. album lectin indicate this is a toxin very similar to ricin.  相似文献   

18.
Mistletoe lectin I (MLI) is the major active constituent of mistletoe extracts, which are widely used for adjuvant tumour therapy. The 66-kDa heterodimeric disulphide-linked glycoprotein is classified as type II ribosome-inactivating protein (RIP) due to the rRNA-cleaving enzyme activity of the A-subunit, also referred to as toxic entity. MLI and the close relative ricin both belong to the family of the two-chain plant type II RIP proteins. Isolation of the glycosylated proteins from plant material yield inhomogeneous material probably due to post-translational modifications. The aim of this study was to prepare pure and homogeneous protein as a prerequisite for structural and mechanistic studies in order to gain insight into the mode of action of this cytotoxic plant protein on tumour and immune cells. Of particular interest was to explain whether the differences in toxicity of ML and ricin are the result of variations of their enzymatic activities. By investigating the sequence homologies between the active sites of different RIPs we were able to deduce a set of primers which were suitable for specific amplification of the mistletoe lectin gene. Applying this PCR strategy the full-length 1923 nucleotide DNA sequence coding for the prepro-protein was obtained showing the existence of a single intron-free gene. In order to elucidate the molecular basis for the observed differences in cytotoxicity within the family of RIP the enzymatic A-subunit was expressed in a heterologous system. Expression of the A-chain in E. coli BL21/pT7 resulted in production of insoluble inclusion bodies constituting 20-30% of total protein. Refolding led to a pure and homogeneous protein species with an apparent molecular mass of 27 kDa and a pI value of 6.4. The ribosome-inactivating activity of the unglycosylated recombinant A-chain (IC50 20.5 pM) protein was in the same range as that of the glycosylated plant-derived ML A-chain (IC50 3.7 pM), which was very similar to that of ricin A-chain (IC50 4.9 pM). Thus, the higher cytotoxicity of ricin cannot be accountable for differences in the enzymatic activities of the type II RIP A-chains.  相似文献   

19.
Identification of the ricin lipase site and implication in cytotoxicity   总被引:4,自引:0,他引:4  
Ricin is a heterodimeric plant toxin and the prototype of type II ribosome-inactivating proteins. Its B-chain is a lectin that enables cell binding. After endocytosis, the A-chain translocates through the membrane of intracellular compartments to reach the cytosol where its N-glycosidase activity inactivates ribosomes, thereby arresting protein synthesis. We here show that ricin possesses a functional lipase active site at the interface between the two subunits. It involves residues from both chains. Mutation to alanine of catalytic serine 221 on the A-chain abolished ricin lipase activity. Moreover, this mutation slowed down the A-chain translocation rate and inhibited toxicity by 35%. Lipase activity is therefore required for efficient ricin A-chain translocation and cytotoxicity. This conclusion was further supported by structural examination of type II ribosome-inactivating proteins that showed that this lipase site is present in toxic (ricin and abrin) but is altered in nontoxic (ebulin 1 and mistletoe lectin I) members of this family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号