首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The factor VIII C2 domain is essential for binding to activated platelet surfaces as well as the cofactor activity of factor VIII in blood coagulation. Inhibitory antibodies against the C2 domain commonly develop following factor VIII replacement therapy for hemophilia A patients, or they may spontaneously arise in cases of acquired hemophilia. Porcine factor VIII is an effective therapeutic for hemophilia patients with inhibitor due to its low cross-reactivity; however, the molecular basis for this behavior is poorly understood. In this study, the X-ray crystal structure of the porcine factor VIII C2 domain was determined, and superposition of the human and porcine C2 domains demonstrates that most surface-exposed differences cluster on the face harboring the “non-classical” antibody epitopes. Furthermore, antibody-binding results illustrate that the “classical” 3E6 antibody can bind both the human and porcine C2 domains, although the inhibitory titer to human factor VIII is 41 Bethesda Units (BU)/mg IgG versus 0.8 BU/mg IgG to porcine factor VIII, while the non-classical G99 antibody does not bind to the porcine C2 domain nor inhibit porcine factor VIII activity. Further structural analysis of differences between the electrostatic surface potentials suggest that the C2 domain binds to the negatively charged phospholipid surfaces of activated platelets primarily through the 3E6 epitope region. In contrast, the G99 face, which contains residue 2227, should be distal to the membrane surface. Phospholipid binding assays indicate that both porcine and human factor VIII C2 domains bind with comparable affinities, and the human K2227A and K2227E mutants bind to phospholipid surfaces with similar affinities as well. Lastly, the G99 IgG bound to PS-immobilized factor VIII C2 domain with an apparent dissociation constant of 15.5 nM, whereas 3E6 antibody binding to PS-bound C2 domain was not observed.  相似文献   

2.
Kallistatin is a serpin with a unique P1 Phe, which confers an excellent inhibitory specificity toward tissue kallikrein. In this study, we investigated the P3-P2-P1 residues (residues 386-388) of human kallistatin in determining inhibitory specificity toward human tissue kallikrein by site-directed mutagenesis and molecular modeling. Human kallistatin mutants with 19 different amino acid substitutions at each P1, P2, or P3 residue were created and purified to compare their kallikrein binding activity. Complex formation assay showed that P1 Arg, P1 Phe (wild type), P1 Lys, P1 Tyr, P1 Met, and P1 Leu display significant binding activity with tissue kallikrein among the P1 variants. Kinetic analysis showed the inhibitory activities of the P1 mutants toward tissue kallikrein in the order of P1 Arg > P1 Phe > P1 Lys >/= P1 Tyr > P1 Leu >/= P1 Met. P1 Phe displays a better selectivity for human tissue kallikrein than P1 Arg, since P1 Arg also inhibits several other serine proteinases. Heparin distinguishes the inhibitory specificity of kallistatin toward kallikrein versus chymotrypsin. For the P2 and P3 variants, the mutants with hydrophobic and bulky amino acids at P2 and basic amino acids at P3 display better binding activity with tissue kallikrein. The inhibitory activities of these mutants toward tissue kallikrein are in the order of P2 Phe (wild type) > P2 Leu > P2 Trp > P2 Met and P3 Arg > P3 Lys (wild type). Molecular modeling of the reactive center loop of kallistatin bound to the reactive crevice of tissue kallikrein indicated that the P2 residue required a long and bulky hydrophobic side chain to reach and fill the hydrophobic S2 cleft generated by Tyr(99) and Trp(219) of tissue kallikrein. Basic amino acids at P3 could stabilize complex formation by forming electrostatic interaction with Asp(98J) and hydrogen bond with Gln(174) of tissue kallikrein. Our results indicate that tissue kallikrein is a specific target proteinase for kallistatin.  相似文献   

3.
Factor VIII, a cofactor of the intrinsic clotting pathway, is proteolytically inactivated by the vitamin K-dependent serine protease, activated protein C in a reaction requiring Ca2+ and a phospholipid surface. Factor VIII was inactivated 15 times faster than factor VIII in complex with either von Willebrand factor (vWf) or the large homodimeric fragment, SPIII (vWf residues 1-1365). Free factor VIII or factor VIII in complex with a smaller fragment, SPIII-T4 (vWf residues 1-272), were inactivated at the same rate, suggesting that this effect was dependent upon the size of factor VIII-vWf complex rather than changes in factor VIII brought about by occupancy of the vWf-binding site. Thrombin cleavage of the factor VIII light chain to remove the vWf-binding site eliminated the protective effects of vWf. In the absence of phospholipid, high levels of the protease inactivated both free and vWf-bound factor VIII at equivalent rates. Using the same conditions, isolated heavy chains and the heavy chains of factor VIII were proteolyzed at similar rates. Taken together, these results suggested that, in the absence of phospholipid, inactivation of factor VIII is independent of factor VIII light chain and further suggest that vWf did not mask susceptible cleavage sites in the cofactor. Solution studies employing fluorescence energy transfer using coumarin-labeled factor VIII (fluorescence donor) and synthetic phospholipid vesicles labeled with octadecyl rhodamine (fluorescence acceptor) indicated saturable binding and equivalent extents of donor fluorescence quenching for factor VIII alone or when complexed with SPIII-T4. However, complexing of factor VIII with either vWf or SPIII eliminated its binding to the phospholipid. Since a phospholipid surface is required for efficient catalysis by the protease, these results suggest that vWf protects factor VIII by inhibiting cofactor-phospholipid interactions.  相似文献   

4.
Resonance Raman and infrared spectra and the CO dissociation rates (k(off)) were measured in Coprinus cinereus peroxidase (CIP) and several mutants in the heme binding pocket. These mutants included the Asp245Asn, Arg51Leu, Arg51Gln, Arg51Asn, Arg51Lys, Phe54Trp, and Phe54Val mutants. Binding of CO to CIP produced different CO adducts at pH 6 and 10. At pH 6, the bound CO is H-bonded to the protonated distal His55 residue, whereas at alkaline pH, the vibrational signatures and the rate of CO dissociation indicate a distal side which is more open or flexible than in other plant peroxidases. The distal Arg51 residue is important in determining the rate of dissociation in the acid form, increasing by 8-17-fold in the Arg51 mutants compared to that for the wild-type protein. Replacement of the distal Phe with Trp created a new acid form characterized by vibrational frequencies and k(off) values very similar to those of cytochrome c peroxidase.  相似文献   

5.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

6.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

7.
A new devised arginine derivative, NG-mesitylene-2-sulfonylarginine, Arg(Mts), was employed for the synthesis of hypothalamic substance P and neurotensin. The former was obtained in 74% yield by treatment of the protected undecapeptide amide, Z - Arg(Mts) - Pro - Lys(Z) - Pro - Gln - Gln - Phe - Phe - Gly - Leu - Met(O)-NH2, with methanesulfonic acid in the presence of anisole followed by reduction of the sulfoxide with 2-mercaptoethanol. The latter was obtained in 54% yield by the similar treatment of the protected tridecapeptide ester, Z - Pyr - Leu - Tyr - Glu(OBzl) - Asn - Lys(Z) - Pro - Arg(Mts) - Arg(Mts) - Pro - Tyr - Ile - Leu - OBzl, with methanesulfonic acid. As scavenger, a mixture of anisole-thioanisole-o-cresol (1:1:1, by vol.) was employed to suppress the side reaction, O-mesitylene-2-sulfonation of the Tyr residue.  相似文献   

8.
We recently demonstrated that a template mechanism makes a significant contribution to the heparin-accelerated inactivation of factor Xa (FXa) by antithrombin at physiologic Ca(2+), suggesting that FXa has a potential heparin-binding site. Structural data indicate that 7 of the 11 basic residues of the heparin-binding exosite of thrombin are conserved at similar three-dimensional locations in FXa. These residues, Arg(93), Lys(96), Arg(125), Arg(165), Lys(169), Lys(236), and Arg(240) were substituted with Ala in separate constructs in Gla domainless forms. It was found that all derivatives cleave Spectrozyme FXa with similar catalytic efficiencies. Antithrombin inactivated FXa derivatives with a similar second-order association rate constant (k(2)) in both the absence and presence of pentasaccharide. In the presence of heparin, however, k(2) with certain mutants were impaired up to 25-fold. Moreover, these mutants bound to heparin-Sepharose with lower affinities. Heparin concentration dependence of the inactivation revealed that only the template portion of the cofactor effect of heparin was affected by the mutagenesis. The order of importance of these residues for binding heparin was as follows: Arg(240) > Lys(236) > Lys(169) > Arg(165) > Lys(96) > Arg(93) >/= Arg(125). Interestingly, further study suggested that certain basic residues of this site, particularly Arg(165) and Lys(169), play key roles in factor Va and/or prothrombin recognition by FXa in prothrombinase.  相似文献   

9.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

10.
There is much debate whether the fatty acid substrate of lipoxygenase binds "carboxylate-end first" or "methyl-end first" in the active site of soybean lipoxygenase-1 (sLO-1). To address this issue, we investigated the sLO-1 mutants Trp500Leu, Trp500Phe, Lys260Leu, and Arg707Leu with steady-state and stopped-flow kinetics. Our data indicate that the substrates (linoleic acid (LA), arachidonic acid (AA)), and the products (13-(S)-hydroperoxy-9,11-(Z,E)-octadecadienoic acid (HPOD) and 15-(S)-hydroperoxyeicosatetraeonic acid (15-(S)-HPETE)) interact with the aromatic residue Trp500 (possibly pi-pi interaction) and with the positively charged amino acid residue Arg707 (charge-charge interaction). Residue Lys260 of soybean lipoxygenase-1 had little effect on either the activation or steady-state kinetics, indicating that both the substrates and products bind "carboxylate-end first" with sLO-1 and not "methyl-end first" as has been proposed for human 15-lipoxygenase.  相似文献   

11.
We have previously determined that the C2-domain of human factor V (residues 2037-2196) is required for expression of cofactor activity and binding to phosphatidylserine (PS)-containing membranes. Naturally occurring factor V inhibitors and a monoclonal antibody (HV-1) recognized epitopes in the amino terminus of the C2-domain (residues 2037-2087) and blocked PS binding. We have now investigated the function of individual amino acids within the C2-domain using charge to alanine mutagenesis. Charged residues located within the C2-domain were changed to alanine in clusters of 1-3 mutations per construct. In addition, mutants W2063A, W2064A, (W2063, W2064)A, and L2116A were constructed as well. The resultant 30 mutants were expressed in COS cells using a B-domain deleted factor V construct (rHFV des B). All mutants were expressed efficiently based on the polyclonal antibody ELISA. The charged residues, Arg(2074), Asp(2098), Arg(2171), Arg(2174), and Glu(2189) are required for maintaining the structural integrity of the C2-domain of factor V. Four of these residues (Arg(2074), Asp(2098), Arg(2171), and Arg(2174)) correspond to positions in the factor VIII C-type domains that have been identified as point mutations in patients with hemophilia A. The epitope for the inhibitory monoclonal antibody HV-1 has been localized to Lys(2060) through Glu(2069) in the factor V C2-domain. The epitope for the inhibitory monoclonal antibody 6A5 is composed of amino acids His(2128) through Lys(2137). The PS-binding site in the factor V C2-domain includes amino acid residues Trp(2063) and Trp(2064). This site overlaps with the epitope for monoclonal antibody HV-1. These factor V C2-domain mutants should provide valuable tools for further defining the molecular interactions responsible for factor V binding to phospholipid membranes.  相似文献   

12.
Grant MA  Baikeev RF  Gilbert GE  Rigby AC 《Biochemistry》2004,43(49):15367-15378
The binding of factor IX to cell membranes requires a structured N-terminal omega-loop conformation that exposes hydrophobic residues for a highly regulated interaction with a phospholipid. We hypothesized that a peptide comprised of amino acids Gly4-Gln11 of factor IX (fIX(G4)(-)(Q11)) and constrained by an engineered disulfide bond would assume the native factor IX omega-loop conformation in the absence of Ca(2+). The small size and freedom from aggregation-inducing calcium interactions would make fIX(G4)(-)(Q11) suitable for structural studies for eliciting details about phospholipid interactions. fIX(G4)(-)(Q11) competes with factor IXa for binding sites on phosphatidylserine-containing membranes with a K(i) of 11 microM and inhibits the activation of factor X by the factor VIIIa-IXa complex with a K(i) of 285 microM. The NMR structure of fIX(G4)(-)(Q11) reveals an omega-loop backbone fold and side chain orientation similar to those found in the calcium-bound factor IX Gla domain, FIX(1-47)-Ca(2+). Dicaproylphosphatidylserine (C(6)PS) induces HN, Halpha backbone, and Hbeta chemical shift perturbations at residues Lys5, Leu6, Phe9, and Val10 of fIX(G4)(-)(Q11), while selectively protecting the NHzeta side chain resonance of Lys5 from solvent exchange. NOEs between the aromatic ring protons of Phe9 and specific acyl chain protons of C(6)PS indicate that these phosphatidylserine protons reside 3-6 A from Phe9. Stabilization of the phosphoserine headgroup and glycerol backbone of C(6)PS identifies that phosphatidylserine is in a protected environment that is spatially juxtaposed with fIX(G4)(-)(Q11). Together, these data demonstrate that Lys5, Leu6, Phe9, and Val10 preferentially interact with C(6)PS and allow us to correlate known hemophilia B mutations of factor IX at Lys5 or Phe9 with impaired phosphatidylserine interaction.  相似文献   

13.
Activation of factor VIII by factor Xa is followed by proteolytic inactivation resulting from cleavage within the A1 subunit (residues 1-372) of factor VIIIa. Factor Xa attacks two sites in A1, Arg(336), which precedes the highly acidic C-terminal region, and a recently identified site at Lys(36). By using isolated A1 subunit as substrate for proteolysis, production of the terminal fragment, A1(37-336), was shown to proceed via two pathways identified by the intermediates A1(1-336) and A1(37-372) and generated by initial cleavage at Arg(336) and Lys(36), respectively. Appearance of the terminal product by the former pathway was 7-8-fold slower than the product obtained by the latter pathway. The isolated A1 subunit was cleaved slowly, independent of the presence of phospholipid. The A1/A3-C1-C2 dimer demonstrated an approximately 3-fold increased cleavage rate constant, and inclusion of phospholipid further enhanced this value by approximately 2-fold. Although association of A1 or A1(37-372) with A3-C1-C2 enhanced the rate of cleavage at Arg(336), inclusion of A3-C1-C2 did not affect the cleavage at Lys(36) in A1(1-336). A synthetic peptide 337-372 blocked the cleavage at Lys(36) (IC(50) = 230 microm) while showing little if any effect on cleavage at Arg(336). Proteolysis at Lys(36), and to a lesser extent Arg(336), was inhibited in a dose-dependent manner by heparin. These results suggest that inactivating cleavages catalyzed by factor Xa at Lys(36) and Arg(336) are regulated in part by the A3-C1-C2 subunit. Furthermore, cleavage at Lys(36) appears to be selectively modulated by the C-terminal acidic region of A1, a region that may interact with factor Xa via its heparin-binding exosite.  相似文献   

14.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

15.
The topology of association of the monotopic protein cyclooxygenase-2 (COX-2) with membranes has been examined using EPR spectroscopy of spin-labeled recombinant human COX-2. Twenty-four mutants, each containing a single free cysteine substituted for an amino acid in the COX-2 membrane binding domain were expressed using the baculovirus system and purified, then conjugated with a nitroxide spin label and reconstituted into liposomes. Determining the relative accessibility of the nitroxide-tagged amino acid side chains for the solubilized COX-2 mutants, or COX-2 reconstituted into liposomes to nonpolar (oxygen) and polar (NiEDDA or CrOx) paramagnetic reagents allowed us to map the topology of COX-2 interaction with the lipid bilayer. When spin-labeled COX-2 was reconstituted into liposomes, EPR power saturation curves showed that side chains for all but two of the 24 mutants tested had limited accessibility to both polar and nonpolar paramagnetic relaxation agents, indicating that COX-2 associates primarily with the interfacial membrane region near the glycerol backbone and phospholipid head groups. Two amino acids, Phe(66) and Leu(67), were readily accessible to the non-polar relaxation agent oxygen, and thus likely inserted into the hydrophobic core of the lipid bilayer. However these residues are co-linear with amino acids in the interfacial region, so their extension into the hydrophobic core must be relatively shallow. EPR and structural data suggest that membrane interaction of COX-2 is also aided by partitioning of 4 aromatic amino acids, Phe(59), Phe(66), Tyr(76), and Phe(84) to the interfacial region, and by the electrostatic interactions of two basic amino acids, Arg(62) and Lys(64), with the phospholipid head groups.  相似文献   

16.
Factor VIII functions in an enzyme complex upon the activated platelet membrane where phosphatidylserine exposure correlates with expression of receptors for factor VIII. To evaluate the specificity of phosphatidylserine-containing membrane binding sites for factor VIII, we have developed a novel membrane model in which phospholipid bilayers are supported by glass microspheres (lipospheres). The binding of fluorescein-labeled factor VIII to lipospheres with membranes of 15% phosphatidylserine was equivalent to binding to phospholipid vesicles (KD = 4.8 nM). Purified von Willebrand factor (vWf), a carrier protein for factor VIII, decreased membrane binding of factor VIII with a Ki of 10 micrograms/ml. Likewise, normal plasma decreased bound factor VIII by more than 90% whereas plasma lacking vWf decreased the binding of factor VIII by only 20%. Proteolytic activation of factor VIII by thrombin, which releases factor VIII from vWf, increased liposphere binding in the presence of vWf and in the presence of normal plasma. Although factor V is homologous to factor VIII and binds to lipospheres with the same affinity, purified factor V was not an efficient competitor for the membrane binding sites of factor VIII. These results indicate that phosphatidylserine-containing membrane sites have sufficient specificity to select thrombin-activated factor VIII from the range of phospholipid-binding proteins in plasma.  相似文献   

17.
Site-directed mutagenesis was performed to investigate whether the two protease-sensitive sequences Phe(156)-Gly(163) and Arg(184)-Ser(191), of the manganese-stabilizing protein (MSP) from a thermophilic cyanobacterium, Synechococcus elongatus (Motoki, A., Shimazu, T., Hirano, M., and Katoh, S. (1998) Biochim. Biophys. Acta 1365, 492-502), are involved in functional interaction with photosystem II (PSII). The ability of MSP to bind to its functional site on the PSII complex and to reactivate oxygen evolution was dramatically reduced by the substitution of Arg(152), Asp(158), Lys(160), or Arg(162) with uncharged residues, by insertion of a single residue between Phe(156) and Leu(157), or by deletion of Leu(157). Substitution of each of the four charged residues with an identically charged residue showed that the charges at Asp(158), and possibly Lys(160), are important for the electrostatic interaction with PSII. The reactivating ability was also strongly affected by the alteration of Phe(156) to Leu. Replacement of Lys(188), the only strictly conserved charged residue in the Arg(184)-Ser(191) sequence, by Gln had only a marginal effect on the function of MSP. High affinity binding of MSP to PSII was also affected significantly by mutation at Arg(152), which is located in a region (Val(148)-Arg(152)) strictly conserved among the 14 sequences so far reported. These results imply that the Val(148)-Gly(163) sequence, which is well conserved among MSPs from cyanobacteria to higher plants, is a domain of MSP for functional interaction with PSII.  相似文献   

18.
In a previous study, we prepared a monoclonal antibody (MoAb) to coagulation factor IX (FIX), designated 65-10, which interfered with the activation of FIX by the activated factor XI/Ca(2+) and neutralized the prolonged ox brain prothrombin time of hemophilia B(M) [11,12]. The location of the epitope on the FIX for 65-10 MoAb is (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) [21]. In this paper, we studied in more detail an epitope on FIX using the systematic substitution of different amino acids at each residue of the epitope peptides and the influence of the epitope peptide on the prolonged ox brain prothrombin time of the hemophilia B(M) plasma of 65-10 MoAb. In the replacement set of amino acids, peptides showing low or no reactivity to 65-10 were (175)Phe --> Asp, Glu, Gly, Lys, Arg, Thr, Val, (176)Asn --> Asp, Glu, Phe, Ile, Lys, Leu, Pro, Val, Tyr, (177)Asp --> Cys, Glu, Phe, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr, and (178) Phe --> Pro. These results imply that a hydrophobic molecule of (175) Phe, a hydrophilic molecule of (176)Asn, and a negative charge molecule of (177)Asp were important to the epitope. The 65-10 MoAb antibody neutralized the prolonged ox brain prothrombin time of hemophilia B(M) Nagoya 2 ((180)Arg -->Trp) and Kashihara ((181)Val --> Phe) as well as B(M) Kiryu ((313)Val --> Asp) and Niigata ((390)Ala --> Val). This reaction was inhibited by preincubation with a (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) peptide conjugated with bovine serum albumin (BSA). 65-10 MoAb that has been useful in detailing epitopes will be useful for qualitative analysis of hemophilia B(M).  相似文献   

19.
Manithody C  Yang L  Rezaie AR 《Biochemistry》2002,41(21):6780-6788
The autolysis loop of factor Xa (fXa) has four basic residues (Arg(143), Lys(147), Arg(150), and Arg(154)) whose contribution to protease specificity of fXa has not been examined. Here, we substituted these basic residues individually with Ala in the fX cDNA and expressed them in mammalian cells using a novel expression/purification vector system. Following purification to homogeneity and activation by the factor X activator from Russell viper venom, the mutants were characterized with respect to their ability to assemble into the prothrombinase complex to activate prothrombin and interact with target plasma fXa inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin. We show that all mutants interacted with factor Va with normal affinities and exhibited wild-type-like prothrombinase activities toward prothrombin. Lys(147) and Arg(154) mutants were inhibited by TFPI approximately 2-fold slower than wild type; however, both Arg(143) and Arg(150) mutants were inhibited normally by the inhibitor. The reactivities of Arg(143) and Lys(147) mutants were improved approximately 2-fold with antithrombin in the absence but not in the presence of heparin cofactors. On the other hand, the pentasaccharide-catalyzed reactivity of antithrombin with the Arg(150) mutant was impaired by an order of magnitude. These results suggest that Arg(150) of the autolysis loop may specifically interact with the activated conformation of antithrombin.  相似文献   

20.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号