首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
First-trimester normal human trophoblast cells show some phenotypic similarities to malignant cells, e.g., rapid proliferation and ability to invade neighboring tissue, including basement membrane in situ, but do not have the ability for unlimited growth or metastasis. The present study examined whether the invasive ability of normal trophoblast cells is an intrinsic property of these cells, independent of the microenvironment provided by the pregnant uterus, and if so, whether they share some of the molecular mechanisms of invasion exercized by metastatic malignant cells. The ability of in vitro grown human trophoblast lines to invade an epithelium-free human amniotic membrane was measured from the temporal kinetics of retention of radioactivity within this membrane resulting from a penetration by 125I-iododeoxyuridine-labeled trophoblast cells. The magnitude of this invasion was compared to that of the highly metastatic human JAR-choriocarcinoma cell line and murine B16F10 melanoma line. Trophoblasts were found to share some of the same molecular mechanisms of invasion with the metastatic cell lines. Inhibitors of collagenase, plasmin, plasminogen, and plasminogen activators completely prevented invasion of the amnion by the trophoblast lines as well as by the metastatic JAR and B16F10 lines. Mersalyl, a compound known to activate collagenase, stimulated invasion by all cell lines tested, including under conditions in which plasmin activity was inhibited. In addition, trophoblasts produced significant levels of type IV collagenase and laminin, both of which appear to be important products of metastatic tumor cells required for basement membrane invasion. It may be concluded from these findings that the invasive property of first trimester human trophoblasts is genetically determined; that the magnitude of amnion invasion cannot differentiate between metastatic cell lines and invasive but nonmetastatic cell lines; and that invasiveness is not a sufficient prerequisite for metastatic ability.  相似文献   

2.
3.
Mechanism of control of trophoblast invasion in situ.   总被引:21,自引:0,他引:21  
We have previously shown that first trimester human trophoblast cells share in vitro invasive properties with malignant cells. In this study we show that the in situ control of trophoblast invasion is provided by the uterine microenvironment. Trophoblast cells were labeled with 125I-deoxyuridine and examined for their ability to invade an epithelium-free human amniotic membrane in vitro under various conditions. The degree of invasion was determined as the percentage of the radioactivity retained within the membrane. Conditioned media from first trimester human decidual cells (DCM) suppressed invasion of trophoblast cells in the amnion invasion assay. This suppression was prevented by addition of neutralizing anti-TGF beta antibody or neutralizing antibody to tissue inhibitor of metalloproteinases (TIMP-1) to the DCM, and mimicked by TGF beta 1. These antibodies also augmented invasion beyond control levels, suggesting that trophoblast cells may also produce these factors. A bioassay for TGF beta activity, measured by antiproliferative effect on the mink lung epithelial cell line Mv 1 Lu, revealed that decidual cells produced this factor only in the latent form, whereas the active form was produced by the trophoblast. A decrease in collagenase type IV activity in the conditioned media of trophoblast cultures was observed when TGF beta 1 was added to these cultures. Removal of endogenous TGF beta in trophoblast cultures by addition of anti-TGF beta antibody resulted in down-regulation of TIMP message as determined by Northern analysis. These results indicate that a) decidua-derived (and to a minor extent trophoblast-derived) TGF beta is the prime mediator in the control of invasion by first trimester trophoblast, the latent form of TGF beta likely being activated by trophoblast-derived proteinases; b) induction of TIMP by TGF beta in both trophoblast and decidua is the final pathway in this control.  相似文献   

4.
Extravillous trophoblast (EVT) cells of the human placenta progressively lose their proliferative activity in situ as EVT cell columns migrate into and invade the decidua. It remains unclear whether this is due to a terminal differentiation of EVT cells along the invasive pathway with concomitant loss of proliferative ability, or a negative regulation by decidua-derived factors, or both mechanisms. Our earlier studies provided evidence for a negative regulation by a decidua-derived factor, transforming growth factor (TGF)-beta, which inhibited proliferation, migration, and invasiveness of first-trimester EVT cells in vitro. We further discovered that decidua also produces decorin, a proteoglycan that binds TGF-beta (and in some cases, inactivates TGF-beta), which is colocalized with TGF-beta in the decidual extracellular matrix. The present study used in vitro-propagated EVT cell lines to examine whether EVT cells retain their capacity for proliferation after the process of invasion; and whether decorin exerts any effect on EVT cell proliferation, migration, or invasiveness in a TGF-beta-dependent or TGF-beta-independent manner. We also examined whether trophoblastic cancer (choriocarcinoma) JAR and JEG-3 cells responded to decorin in a similar manner. Proliferation was measured using a colorimetric (MTT) cellularity assay and immunolabeling for the Ki-67 proliferation marker. Migration and invasiveness were measured in transwells by the ability of cells to cross 8-microm pores of polycarbonate membranes in the absence or presence of an additional matrigel barrier. These experiments revealed three points. First, EVT cells retained limited but significant proliferative ability in vitro after invading matrigel. Second, that decorin alone blocked EVT cell proliferation in a dose-dependent manner. This effect remained unaffected in an additional presence of TGF-beta, which exerted antiproliferative effects on its own. The antiproliferative effect of decorin was explained by an up-regulation of the p21 protein. Third, that decorin alone or TGF-beta alone exerted antimigratory and anti-invasive effects on EVT cells, but the addition of TGF-beta to decorin did not alter decorin action. And fourth, that choriocarcinoma cells were resistant to antiproliferative, antimigratory, and anti-invasive effects of decorin. These results suggest 1) that the invasive function of EVT cells is not associated with a terminal differentiation into a noncycling state; 2) that proliferation, migration, and invasiveness of EVT cells within the decidua are independently controlled by two decidual products, TGF-beta and decorin (decorin in the decidual extracellular matrix may serve as a storage mechanism for TGF-beta in an inactive state and may be activated by EVT cell proteolytic mechanisms, thus preventing overinvasion); and 3) that choriocarcinoma cells are refractory to negative regulation by both decidua-derived factors.  相似文献   

5.
6.
Metastasis is a primary cause of mortality due to cancer. Early metastatic growth involves both a remodeling of the extracellular matrix surrounding tumors and invasion of tumors across the basement membrane. Up-regulation of extracellular matrix degrading proteases such as urokinase plasminogen activator (uPA) and matrix metalloproteinases has been reported to facilitate tumor cell invasion. Autocrine transforming growth factor-beta (TGF-beta) signaling may play an important role in cancer cell invasion and metastasis; however, the underlying mechanisms remain unclear. In the present study, we report that autocrine TGF-beta supports cancer cell invasion by maintaining uPA levels through protein secretion. Interestingly, treatment of paracrine/exogenous TGF-beta at higher concentrations than autocrine TGF-beta further enhanced uPA expression and cell invasion. The enhanced uPA expression by exogenous TGF-beta is a result of increased uPA mRNA expression due to RNA stabilization. We observed that both autocrine and paracrine TGF-beta-mediated regulation of uPA levels was lost upon depletion of Smad4 protein by RNA interference. Thus, through the Smad pathway, autocrine TGF-beta maintains uPA expression through facilitated protein secretion, thereby supporting tumor cell invasiveness, whereas exogenous TGF-beta further enhances uPA expression through mRNA stabilization leading to even greater invasiveness of the cancer cells.  相似文献   

7.
Trophoblast invasion and modification of the spiral arterioles are essential for the establishment of adequate uteroplacental blood flow during pregnancy. However, such vascular remodeling is deficient in preeclampsia. This disease is also associated with increased maternal levels of circulating proinflammatory cytokines such as tumor necrosis factor (TNF) and reduced levels of immunoregulatory cytokines such as interleukin 10 (IL10). We have previously shown that activated macrophages inhibit trophoblast invasiveness in vitro. The present study demonstrates that IL10 interferes with the invasion-inhibitory effect that activated macrophages exert on trophoblast cells. Co-culture experiments revealed that human lipopolysaccharide (LPS)-activated macrophages inhibited the ability of immortalized HTR-8/SVneo human trophoblast cells to invade through reconstituted extracellular matrix. This effect of activated macrophages on trophoblast invasiveness was paralleled by decreased expression of urokinase plasminogen activator receptor (PLAUR) on the surface of trophoblast cells, and by increased secretion of plasminogen activator inhibitor type 1 (SERPINE1). Exposure of LPS-treated macrophages to IL10 prior to co-culture prevented their ability to inhibit trophoblast invasion, PLAUR expression, and to stimulate SERPINE1 secretion. Interleukin 10 prevented macrophage activation by LPS as determined by the lack of secretion of TNF in the culture medium, and a neutralizing TNF antibody completely blocked the effect of macrophages on trophoblast invasion. These results indicate that decreased circulating levels of IL10 associated with preeclampsia may contribute to inadequate trophoblast invasion and remodeling of the uterine spiral arterioles.  相似文献   

8.
We had earlier shown that TGF-beta controls proliferation, migration, and invasiveness of normal human trophoblast cells, whereas premalignant and malignant trophoblast cells are resistant to TGF-beta. To identify signaling defects responsible for TGF-beta resistance in premalignant and malignant trophoblasts, we have compared the expression of TGF-beta signaling molecules in a normal trophoblast cell line (HTR-8), its premalignant derivative (RSVT2/C), and two choriocarcinoma cell lines (JAR and JEG-3). RT-PCR analysis revealed that all these cell lines expressed the mRNA of TGF-beta1, -beta2, and -beta3, TGF-beta receptors type I, II, and III, and post-receptor signaling genes smad2, smad3, smad4, smad6, and smad7 with the exception that TGF-beta2 and smad3 were undetectable in JAR and JEG-3 cells. Immunoblot analysis confirmed the absence of smad3 protein in choriocarcinoma cells. Treatment with TGF-beta1 induced smad3 phosphorylation and smad3 translocation to the nucleus in the normal and premalignant trophoblast cells. These results suggest that loss of smad3 may account for a functional disruption in the TGF-beta signaling pathway in choriocarcinomas, but not in the premalignant trophoblast.  相似文献   

9.
Trophoblast cell invasion into the uterine wall is characteristic of hemochorial placentation. In this report, we examine trophoblast cell invasion in the rat and mouse, the endocrine phenotype of invasive trophoblast cells, and aspects of the regulation of trophoblast cell invasion. In the rat, trophoblast cells exhibit extensive interstitial and endovascular invasion. Trophoblast cells penetrate through the decidua and well into the metrial gland, where they form intimate associations with the vasculature. Trophoblast cell invasion in the mouse is primarily interstitial and is restricted to the mesometrial decidua. Both interstitial and endovascular rat trophoblast cells synthesize a unique set of prolactin (PRL)-like hormones/cytokines, PRL-like protein-A (PLP-A), PLP-L, and PLP-M. Invading mouse trophoblast cells also possess endocrine activities, including the expression of PLP-M and PLP-N. The trafficking of natural killer (NK) cells and trophoblast cells within the mesometrial uterus is reciprocal in both the rat and mouse. As NK cells disappear from the mesometrial compartment, a subpopulation of trophoblast cells exit the chorioallantoic placenta and enter the decidua. Furthermore, the onset of interstitial trophoblast cell invasion is accelerated in mice with a genetic deficiency of NK cells, Tg epsilon 26 mice, implicating a possible regulatory role of NK cells in trophoblast cell invasion. Additionally, the NK cell product, interferon-gamma (IFNgamma), inhibits trophoblast cell outgrowth, and trophoblast cell invasion is accelerated in mice with a genetic deficiency in the IFNgamma or the IFNgamma receptor. In summary, trophoblast cells invade the uterine wall during the last week of gestation in the rat and mouse and possess a unique endocrine phenotype, and factors present in the uterine mesometrial compartment modulate their invasive behavior.  相似文献   

10.
Proliferation, migration, and invasiveness of the normal placental extravillous trophoblast (EVT) cells are negatively regulated by transforming growth factor-beta (TGF-beta), whereas malignant EVT (JAR and JEG-3 choriocarcinoma) cells are resistant to TGF-beta. These malignant cells were found to have lost the expression of Smad3. Present study examined whether Smad3 restitution in JAR cells could restore TGF-beta response. We produced a stable Smad3 cDNA-transfected clone (JAR-smad3/c) which exhibited further upregulation of Smad3 in the presence of TGF-beta1. Since anti-invasive effects of TGF-beta in the normal EVT cells were shown to be mediated in part by plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA), we compared the expression of PAI-1 and uPA in the normal EVT, JAR, and JAR-smad3/c cells in the presence or absence of TGF-beta1. The basal levels of PAI-1 mRNA and secreted PAI-1 and uPA proteins were found to be very low in JAR and JAR-smad3/c cells, as compared to the normal EVT cells. However, TGF-beta1 upregulated PAI-1 and downregulated uPA in JAR-smad3/c cells, but not in JAR cells. Thus, resistance of choriocarcinoma cells to anti-invasive effects of TGF-beta may, at least in part, be due to loss of Smad3 expression.  相似文献   

11.
12.
Two-way interactions between the blastocyst trophectoderm and the uterine luminal epithelium are essential for implantation. The key events of this process are cell-cell contact of trophectoderm cells with uterine luminal epithelial cells, controlled invasion of trophoblast cells through the luminal epithelium and the basement membrane, transformation of uterine stromal cells surrounding the blastocyst into decidual cells, and protection of the "semiallogenic" embryo from the mother's immunological responses. Because cell-cell contact between the trophectoderm epithelium and the luminal epithelium is essential for implantation, we investigated the expression of zonula occludens-1 (ZO-1) and E-cadherin, two molecules associated with epithelial cell junctions, in the mouse uterus during the periimplantation period. Preimplantation uterine epithelial cells express both ZO-1 and E-cadherin. With the initiation and progression of implantation, ZO-1 and E-cadherin are expressed in stromal cells of the primary decidual zone (PDZ). As trophoblast invasion progresses, these two molecules are expressed in stroma in advance of the invading trophoblast cells. These results suggest that expression of these adherence and tight junctions molecules in the PDZ serves to function as a permeability barrier to regulate access of immunologically competent maternal cells and/or molecules to the embryo and provide homotypic guidance of trophoblast cells in the endometrium.  相似文献   

13.
14.
15.
The relative expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is an important determinant in trophoblast invasion of the uterus and tumor invasion and metastasis. Our previous studies have shown that low oxygen levels increase the in vitro invasiveness of trophoblast and tumor cells. The present study examined whether changes in oxygen levels affect TIMP and MMP expression by cultured trophoblast and breast cancer cells. Reverse zymographic analysis demonstrated reduced TIMP-1 protein secretion by HTR-8/SVneo trophoblast cells as well as MDA-MB-231 and MCF-7 breast carcinoma cells cultured in 1% vs 20% oxygen for 24 h. While gelatin zymography revealed no changes in the levels of MMP-9 secreted by HTR-8/SVneo trophoblasts cultured under various oxygen concentrations for 24 h, human MDA-MB-231 breast carcinoma cells displayed increased MMP-9 secretion and human MCF-7 breast cancer cells exhibited reduced secretion of this enzyme when cultured under similar conditions. In contrast, MMP-2 levels remained unchanged in all cultures incubated under similar conditions. Western blot analysis of MMP-9 protein in cell extracts confirmed the results of zymography. To assess the contribution of enhanced MMP activity to hypoxia-induced invasion, the effect of an MMP inhibitor (llomastat) on the ability of MDA-MB-231 cells to penetrate reconstituted extracellular matrix (Matrigel) was examined. Results showed that MMP inhibition significantly decreased the hypoxic upregulation of invasion by these cells. These findings indicate that the increased cellular invasiveness observed under reduced oxygen conditions may be due in part to a shift in the balance between MMPs and their inhibitors favoring increased MMP activity.  相似文献   

16.
胚胎植入过程中,滋养层细胞浸润与肿瘤的迁移过程非常相似,但显著的区别在于前者是受严格调控的有节制的浸润,基质金属蛋白酶(MMPs)的许多成员在其中起重要的作用.MMP-26是近年来发现的MMPs家族的新成员,它在滋养层细胞中的作用所知甚少.利用国际常用的人滋养层细胞模型——人绒毛膜上皮癌细胞系(JEG-3)作为体外实验模型,探讨MMP-26在人滋养层细胞浸润调节中的作用.将含有MMP-26全长cDNA的pCR3.1质粒转染到JEG-3细胞中,获得过量表达MMP-26基因的稳定细胞系JEG-3/MMP-26;细胞浸润分析表明JEG/MMP-26细胞的浸润能力较母本细胞明显增强;RT-PCR和明胶酶谱分析显示JEG-3/MMP-26细胞中MMP-9的表达和分泌水平提高;双荧光免疫细胞化学进一步显示MMP-26和MMP-9蛋白在细胞中有共定位现象.上述结果表明MMP-26能有效促进人滋养层细胞浸润,其作用可能是通过与其他MMP分子(如MMP-9)的协调来实现的.  相似文献   

17.
《Cellular signalling》2014,26(9):1935-1942
Placentation is critical for establishing a healthy pregnancy. Trophoblasts mediate implantation and placentation and certain subtypes, most notably extravillous cytotrophoblast, are highly invasive. Trophoblast invasion is tightly regulated by microenvironmental cues that dictate placental morphology and depth. In choriocarcinomas, malignant trophoblast cells become hyperinvasive, breaching the myometrium and leading to major complications. Nodal, a member of the TGF-β superfamily, is expressed throughout the endometrium during the peri-implantation period and in invasive trophoblast cells. Nodal promotes the invasion of numerous types of cancer cells. However, Nodal's role in trophoblast and choriocarcinoma cell invasion is unclear. Here we show that Nodal stimulates the invasion of both the non-malignant HTR-8SV/neo trophoblast and JAR choriocarcinoma cells in a dose-dependent manner. We found that endogenous β-arrestins and Ral GTPases, key regulators of the cell cytoskeleton, are constitutively associated with Nodal receptors (ALK4 and ALK7) in trophoblast cells and that RalA is colocalized with ALK4 in endocytic vesicles. Nodal stimulates endogenous β-arrestin2 to associate with phospho-ERK1/2, and knockdown of β-arrestin or Ral proteins impairs Nodal-induced trophoblast and choriocarcinoma cell invasion. These results demonstrate, for the first time, that β-arrestins and RalGTPases are important regulators of Nodal-induced invasion.  相似文献   

18.
19.
Abstract: Biopsies of placentas (n = 21), placental bed (n = 17) and decidua (n = 26) of various gestation periods (30 to 140 days) were used to study trophoblast invasion in the baboon. Application of immunohistochemical staining for cytokeratin allowed proper identification of trophoblast. Earlier reports showing restricted trophoblast invasion in this species were confirmed by the finding that endovascular trophoblast was present in only one third of biopsies containing spiral arteries. Moreover, immunostaining for cytokeratin revealed that in several arteries only a few isolated trophoblastic cells were present, while the vessel had not undergone the normal physiological change. Trophoblast invasion could only be detected within decidual, but not in myometrial, segments of spiral arteries. Interstitial trophoblast invasion was very limited and multinuclear giant cells were absent. Immunohistochemical staining suggested a contribution of laminin to the fibrinoid deposition within the physiologically changed spiral arteries, while fibronectin was present intracellularly in the invaded trophoblast. Because of differences in the trophoblast invasion pattern, the baboon cannot be regarded as a satisfactory experimental model to explore results of inadequate endovascular trophoblast invasion which, in the human, leads to pregnancy complications such a preeclampsia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号