首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
DNA光修复酶在蓝光驱动下,利用黄素腺嘌呤二核苷酸(FAD)分子的黄素酶作为催化辅助因子,来修复紫外线诱导的环丁烷嘧啶二聚体(CPD)和嘧啶(6-4)嘧啶酮的DNA损伤产物。通过无根发育树,综述了DNA光修复酶/隐花色素家族的分类;详细地阐述两种DNA光修复酶的结构、光损伤后产生的嘧啶二聚体的结构及光修复过程;最后回顾了DNA光修复酶的研究现状并展望该领域的发展前景。  相似文献   

2.
UV-B辐射和NaCl胁迫对绿豆幼苗叶片DNA损伤的复合效应   总被引:2,自引:0,他引:2  
贺军民  罗芬兰 《生态学报》2006,26(5):1375-1381
研究了0·4W/m2UV-B辐射和0·4%NaCl胁迫对两绿豆品种中绿_1和秦豆-20(PhaseolusraditusL.cv.Zhongl櫣-1andQindou-20)幼苗叶片DNA损伤的复合效应。结果表明:(1)中绿-1抗UV-B辐射和NaCl胁迫的能力均强于秦豆-20;NaCl胁迫能降低中绿-1UV-B敏感性,但对秦豆-20UV-B敏感性无明显影响。(2)两逆境因子单独胁迫或复合胁迫下DNA增色效应均明显降低,但中绿-1降低程度小于秦豆-20,复合胁迫下降低程度小于单独NaCl胁迫下。(3)UV-B辐射诱导的中绿-1DNA链内环丁烷嘧啶二聚体(CPD)累积量明显低于秦豆-20;NaCl胁迫能降低UV-B诱导的中绿-1CPD累积,而对UV-B诱导的秦豆-20CPD累积无影响。(4)各种胁迫处理均导致两品种幼苗DNA含量降低,但两品种间相比中绿-1降低程度较大。结果说明UV-B辐射不仅能诱导DNA链内交联形成CPD,而且能诱导DNA链间交联和DNA含量降低,且不同绿豆品种或同一品种在有无NaCl胁迫时UV-B敏感性的差异主要与CPD累积量和DNA链间交联程度有关。  相似文献   

3.
将2个对UV-B敏感性不同的绿豆品种‘秦豆-20’和‘中绿-1’幼苗放在培养室内,进行0.4W/m~2 UV-B辐射和0.4%NaCl胁迫的单独或复合处理,研究了NaCl胁迫对UV-B辐射诱导的DNA伤害和修复的影响。结果显示:在NaCl胁迫下,(1)在光下抗UV-B的品种‘中绿-1’的环丁烷嘧啶二聚体(CPD)累积量降低,而敏感品种‘秦豆-20’的CPD累积量未发生变化;(2)两品种CPD形成量均比无NaCl胁迫时低;(3)抗UV-B品种DNA的光、暗修复能力均比无NaCl胁迫时高:(4)而敏感品种DNA的光修复能力比无NaCl胁迫时低、暗修复能力未发生变化。另外,CPD形成量与紫外吸收物含量间具有明显的负相关性。说明NaCl胁迫不仅影响2个绿豆品种幼苗的CPD形成量,而且影响DNA的光、暗修复能力,进而导致了CPD累积量发生变化,由此影响了幼苗的UV-B敏感性。结果也暗示CPD形成量的变化是由于紫外吸收物质含量的不同所导致的。  相似文献   

4.
紫外诱导植物产生DNA损伤的修复机制   总被引:1,自引:0,他引:1  
日光中的紫外线可以诱导生物体的DNA产生损伤,产生的损伤主要有两种:环丁烷嘧啶二聚体(CPD)和6-4光产物(即6-4嘧啶二聚体).这些损伤如果不经修复则可能会导致生物体死亡.最近的研究证明,植物可以通过多种途径来修复紫外诱导的DNA损伤,包括6-4光产物和CPD的光修复作用.此外,植物还可以通过一般的核酸切除修复(NER)以及旁路聚合酶(bypass polymerase)来修复损伤.  相似文献   

5.
中波紫外线(UVB)会对皮肤造成各种损伤,这些都根源于UVB对皮肤细胞DNA的光损伤。光损伤产物主要有环丁烷嘧啶二聚体(CPD)和64光产物(6-4PP)两类,还包括少量的氧化损伤。CPD和6-4PP的修复是由核苷酸切除修复(NER)执行的。NER可分为全基因组核苷酸切除修复(GGR)和转录耦联核苷酸切除修复(TCR)两个亚途径。识别因子XPC通过一种不直接识别损伤本身的机制在GGR识别过程中发挥作用;在TCR识别过程中强调了关键因子CSB单体及二聚体两种形式的转换。在染色质水平上,DDB介导的泛素化作用是NER识别过程中重要的调控要素。另外,完成使命的识别因子的最终走向也是NER途径中的一个重要环节。通过分析上述生化过程,较清楚地总结了GGR及TCR对UVB导致的光损伤的识别机制。  相似文献   

6.
UV-B对植物分子和细胞水平的效应   总被引:5,自引:0,他引:5  
本文综述了植物在分子和细胞水平上UV-B效应的研究进展。主要讨论了UV-B信号途径及光受体,UV-B诱导的DNA损伤、转座子激活,UV-B对光合器官的分子伤害及相关基因表达的调控等。  相似文献   

7.
采用单克隆抗ELISA检测了UV-B对水稻叶片CPD的诱导形成及温度的影响,水稻叶片中CPD的积累随UV-B处理时间的延长而增加;UV-B诱导的CPD形成具有温度依赖性,在0-30℃的不范围内,较低温度下UV-B诱导的CPD较少。  相似文献   

8.
目的:考察在不同温度下储存时间和反复冻融对粪便中人基因组DNA含量的影响。方法:1.将粪便样本在室温、4℃、-40℃和-70℃条件下分别放置不同时间和-40℃条件下保存并反复冻融后,使用QIAamp DNA Stool Mini Kit试剂盒提取得到粪便DNA,通过实时荧光定量PCR体系对人KRAS基因定量确定人基因组DNA含量,评价粪便样本不同冻存条件对其中人基因组DNA含量的影响。2.将粪便DNA样本在4℃和-40℃条件下分别放置不同时间和-40℃条件下保存并反复冻融后,评价粪便DNA样本不同冻存条件下对其中人基因组DNA含量的影响。结果:1).粪便样本常温放置2小时,其中人基因组DNA即发生明显降解(P0.01),4℃可保存3天左右,-40℃可保存4周,-70℃可保存3个月以上,粪便反复冻融第3次,其中人基因组DNA降解具有统计学意义(P0.05)。2).粪便DNA 4℃可保存3天,-40℃可保存4周,粪便DNA反复冻融第4次,其中人基因组DNA降解具有统计学意义(P0.05)。结论:符合大肠癌早期无创分子诊断要求的粪便DNA贮存条件:粪便样本室温收集后尽快保存;短期可处理的粪便样本存放在4℃条件下(3天内);暂无法处理则存于-40℃(1个月内);粪便样本长期保存在-70℃条件下,可保存3个月。  相似文献   

9.
枇杷幼果PLD和LOX对低温胁迫的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
以3年生枇杷品种‘早钟6号’(Eriobotrya japonica‘Zaozhong No.6’)容器嫁接苗为试材,于0℃、-1℃、-3℃人工气候室内进行低温胁迫处理,探讨枇杷幼果细胞膜磷脂及相关酶对低温胁迫的响应机制。结果显示,在不同温度胁迫过程中,枇杷幼果磷脂酶D(PLD,EC 3.1.4.4)和脂氧合酶(LOX,EC 1.13.11.12)活性均呈上升趋势;质膜磷脂酰胆碱(PC)和磷脂酰肌醇(PI)含量因逐渐被降解而呈下降趋势,磷脂酸(PA)含量出现积累、增加,而膜结合Ca2+含量有不同程度的降低。随处理时间的延长和处理温度的降低,枇杷幼果细胞PLD和LOX活性增幅加大,从而加速了膜PC和PI的降解和PA的积累。低温胁迫过程中幼果细胞膜PC含量的降幅大于PI,膜结合Ca2+含量的变化与PLD和LOX活性变化呈负相关。低温胁迫下枇杷幼果细胞膜结合Ca2+含量的减少诱导了膜脂降解酶PLD和LOX活性的提高,并导致膜结构稳定性下降,加剧了低温胁迫对膜脂的降解和脂质过氧化伤害,其中尤以-3℃胁迫处理4~6 h对幼果细胞质膜的伤害最严重。表明低温胁迫下Ca2+·Ca M信使系统可能参与枇杷幼果细胞膜PLD和LOX活性的调控。  相似文献   

10.
探讨Kruppel样因子4(KLF4)对内毒素所致白介素(IL-6)的基因表达以及释放的影响,并对其调控机制做了初步研究.使用RT-PCR和Western blot检测KLF4 mRNA和蛋白质的表达.采用KLF4过表达的RAW264.7巨噬细胞株或反义寡核苷酸技术抑制内源性KLF4的表达,用RT-PCR和ELISA检测内毒素(LPS)刺激后IL-6 mRNA和蛋白质的表达.采用荧光素酶报告基因检测RAW264.7细胞中KLF4过表达对IL-6基因启动子报告基因转录活性的影响.使用EMSA法检测细胞中KLF4与IL-6基因启动子区KLF4元件的结合.结果表明:LPS可以诱导RAW264.7巨噬细胞KLF4的表达以及IL-6蛋白表达.KLF4过表达明显抑制IL-6的mRNA和蛋白质的表达,而KLF4缺失使这种作用消失.荧光素酶报告基因的结果显示,KLF4可以抑制LPS所致的IL-6基因启动子的转录活性.EMSA显示KLF4不能与IL-6启动子区的KLF4结合元件直接结合.结果表明,LPS可以促进RAW264.7小鼠巨噬细胞KLF4的表达和IL-6的释放.KLF4能抑制LPS诱导的IL-6表达和释放,其机制是抑制IL-6启动子的转录活性,但KLF4的抑制作用不是通过直接与IL-6基因的启动子区相结合而实现的.  相似文献   

11.
DNA photolyases are enzymes which mediate the light-dependent repair (photoreactivation) of UV-induced damage products in DNA by direct reversal of base damage rather than via excision repair pathways. Arabidopsis thaliana contains two photolyases specific for photoreactivation of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4)pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA. Reduced FADH and a reduced pterin were identified as cofactors of the native Arabidopsis CPD photolyase protein. This is the first report of the chromophore composition of any native class II CPD photolyase protein to our knowledge. CPD photolyase protein levels vary between tissues and with leaf age and are highest in flowers and leaves of 3-5-week-old Arabidopsis plants. White light or UV-B irradiation induces CPD photolyase expression in Arabidopsis tissues. This contrasts with the 6-4PP photolyase protein which is constitutively expressed and not regulated by either white or UV-B light. Arabidopsis CPD and 6-4PP photolyase enzymes can remove UV-B-induced photoproducts from DNA in planta even when plants are grown under enhanced levels of UV-B irradiation and at elevated temperatures although the rate of removal of CPDs is slower at high growth temperatures. These studies indicate that Arabidopsis possesses the photorepair capacity to respond effectively to increased UV-B-induced DNA damage under conditions predicted to be representative of increases in UV-B irradiation levels at the Earth's surface and global warming in the twenty-first century.  相似文献   

12.
Monoclonal antibodies were used in an enzyme-linked immunosorbent assay (ELISA) to detect the induction and removal of cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA isolated from ultraviolet B (UV-B)-exposed primary wheat (Triticum aestivum L. cv. Chinese Spring) leaf tissue. The accumulation of lesions in the primary leaves of 6-d-old wheat seedlings was followed during the exposure of the leaf to an approximate dose of 3.6×10?1 W m?2 UV-B (Caldwell weighting). Significant increases in the levels of both CPDs and (6-4) photoproducts were detected in wheat leaves exposed to UV-B in the absence of other light However, only an increase in (6-4) photoproduct levels could be measured in wheat leaves exposed to the same UV-B source in the presence of supplemental white light. The removal of CPD antibody binding sites in the DNA after irradiation was rapid under conditions of high light intensity in contrast to the removal of (6-4) photoproduct antibody binding sites, which was significantly slower. The removal of CPDs appeared to be light dependent, this rate of removal decreasing with decreasing light fluences. The removal of (6-4) photoproducts also appeared light dependent, but to a lesser extent than the removal of CPDs, under the conditions studied here. Gene expression in the primary wheat leaf was measured and showed an up-regulation of chalcone synthase expression and a reduction in expression of chlorophyll a/b-binding protein (cab) in response to supplementary UV-B. No effect was seen on the expression of the other photosynthetic genes studied (the genes coding for the enzymes sedoheptu-lose 1,7-bisphosphatase and fructose 1,6-bisphosphatase). Measurement of the levels of DNA lesions in this same tissue showed that the observed changes in gene expression accompanied the appearance of UV-B induced lesions in the form of (6-4) photoproducts in the wheat leaf genome.  相似文献   

13.
14.
A process‐based model integrating the effects of UV‐B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV‐B radiation‐induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV‐B radiation‐induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclobutane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV‐B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine‐pyrimidone (6‐4) photoproducts (6‐4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV‐B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV‐B radiation levels are more detrimental than short, high doses of UV‐B radiation. The combination of low temperature and increased UV‐B radiation was more significant in the level of UV‐B radiation‐induced damage than UV‐B radiation alone. Slow‐growing leaves were more affected by increased UV‐B radiation than fast‐growing leaves.  相似文献   

15.
In order to better understand the relative contribution of the different UV components of sunlight to solar mutagenesis, the distribution of the bipyrimidine photolesions, cyclobutane pyrimidine dimers (CPD), (6-4) photoproducts ((6-4)PP), and their Dewar valence photoisomers (DewarPP) was examined in Chinese hamster ovary cells irradiated with UVC, UVB, or UVA radiation or simulated sunlight. The absolute amount of each type of photoproduct was measured by using a calibrated and sensitive immuno-dot-blot assay. As already established for UVC and UVB, we report the production of CPD by UVA radiation, at a yield in accordance with the DNA absorption spectrum. At biologically relevant doses, DewarPP were more efficiently produced by simulated solar light than by UVB (ratios of DewarPP to (6-4)PP of 1:3 and 1:8, respectively), but were detected neither after UVA nor after UVC radiation. The comparative rates of formation for CPD, (6-4)PP and DewarPP are 1:0.25 for UVC, 1:0. 12:0.014 for UVB, and 1:0.18:0.06 for simulated sunlight. The repair rates of these photoproducts were also studied in nucleotide excision repair-proficient cells irradiated with UVB, UVA radiation, or simulated sunlight. Interestingly, DewarPP were eliminated slowly, inefficiently, and at the same rate as CPD. In contrast, removal of (6-4)PP photoproducts was rapid and completed 24 h after exposure. Altogether, our results indicate that, in addition to CPD and (6-4)PP, DewarPP may play a role in solar cytotoxicity and mutagenesis.  相似文献   

16.
Leaf discs from expanding leaves of Rumex patientia L. were exposed to 7 hours of visible plus different levels of ultraviolet radiation in the 290 to 315 nm waveband (UV-B) and then placed in darkness. Leaf disc expansion was reduced and anthocyanin production was increased in discs exposed to moderate or high levels of UV-B radiation when compared to control discs. The possibility that the inhibition of leaf expansion by UV-B radiation might be at least partially phytochrome-mediated was examined by giving discs brief red or far red irradiation following exposure to UV-B radiation. Brief red radiation (R) following treatment with moderate or high UV-B radiation did not alter the pattern of growth or anthocyanin production compared to discs placed in darkness following UV-B treatment. However, a posttreatment with far red radiation (FR) reduced the growth of discs subjected previously to either moderate UV-B or no UV-B irradiation to the level of growth of discs given high UV-B. FR posttreatment also decreased anthocyanin production in discs in moderate and high UV-B treatments. Effects of FR and UV-B radiation apparently do not involve the same mechanism. This was demonstrated by experiments in which FR following the UV-B treatments was in turn followed by R, which reversed the effects of the FR but did not alter the growth inhibition or increased anthocyanin production induced by moderate or high levels of UV-B radiation.  相似文献   

17.
Previous studies point to the XPC-hHR23B complex as the principal initiator of global genome nucleotide excision repair (NER) pathway, responsible for the repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) in human cells. However, the UV-damaged DNA binding protein (UV-DDB) has also been proposed as a damage recognition factor involved in repair of UV-photoproducts, especially CPD. Here, we show in human XP-E cells (UV-DDB deficient) that the incision complex formation at UV-induced lesions was severely diminished in locally damaged nuclear spots. Repair kinetics of CPD and 6-4PP in locally and globally UV-irradiated normal human and XP-E cells demonstrate that UV-DDB can mediate efficient targeting of XPC-hHR23B and other NER factors to 6-4PP. The data is consistent with a mechanism in which UV-DDB forms a stable complex when bound to a 6-4PP, allowing subsequent repair proteins--starting with XPC-hHR23B--to accumulate, and verify the lesion, resulting in efficient 6-4PP repair. These findings suggest that (i) UV-DDB accelerates repair of 6-4PP, and at later time points also CPD, (ii) the fraction of 6-4PP that can be bound by UV-DDB is limited due to its low cellular quantity and fast UV dependent degradation, and (iii) in the absence of UV-DDB a slow XPC-hHR23B dependent pathway is capable to repair 6-4PP, and to some extent also CPD.  相似文献   

18.
Growth of a near‐isogenic line (NIL) for the purple leaf gene Pl of rice with a genetic background of Taichung 65 (T‐65) rice was significantly retarded by supplementary ultraviolet‐B radiation (UV‐B), despite the fact that the amounts of UV‐absorbing compounds and anthocyanins in NIL were significantly higher than those in T‐65. In order to understand the role of flavonoids in UV‐B induced damage protection in T‐65 and the NIL, both the (1) relationships between changes in the steady state of cyclobutane pyrimidine dimer (CPD) levels and changes in accumulation of anthocyanins and UV‐absorbing compounds in leaves with leaf age, and (2) the susceptibility to CPD induction by UV‐B radiation and the ability to photorepair CPD were examined. Although supplementary UV‐B elevated the steady state of CPD levels in leaves in both strains, the level in the leaf of the NIL was higher than that in T‐65 at any time. The susceptibility to CPD induction by short‐term (challenge) UV‐B exposure was lower in the NIL than in T‐65. On the other hand, the CPD photorepair was also lower in the leaves of the NIL than in those of T‐65. The decrease in CPD‐photorepair in the NIL was due to a lowering of the leaf‐penetrating blue/UV‐A radiation, which is effective for photoreactivation by photolyase, by anthocyanins. Thus, accumulation of anthocyanins and UV‐absorbing compounds did not effectively function as screening against damage caused by elevated UV‐B radiation in the NIL, and the retardation of growth in the NIL resulted from its lower ability to photorepair CPD by higher amounts of anthocyanins.  相似文献   

19.
Ethylene biosynthesis in leaf discs of tobacco ( Nicotiana tabacum L. cv. Xanthi), as measured by the conversion of L-[3,4-14C]-methionine to 14C2H4, was markedly inhibited by exogenous ethylene. This inhibition was accompanied by a decrease in total (free + conjugated) content of 1-aminocyclopropane-1-carboxylic acid (ACC), most of which appeared in its conjugated inactive form. The autoinhibitory effect of ethylene was reversible and could be relieved by Ag+. The Ag+-treated leaf discs, with or without ethylene, contained only free ACC at an increased level. The results suggest that in tobacco leaves, the autoinhibition of ethylene production resulted from reduction in the availability of free ACC, through both suppression of ACC formation and increased ACC conjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号