首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The snr1 gene of Drosophila melanogaster encodes a conserved component of the multiprotein Brahma (Brm) complex, a counterpart to the SWI/SNF complexes that participate in ATP-dependent chromatin remodeling. Loss-of-function and null mutations in the snr1 gene reveal its essential role in Drosophila development. We identified new mutant alleles and ectopically expressed deleted forms to dissect the specific functions of SNR1. Somatic and germ cell clone analyses confirmed its requirement in a continuous and widespread fashion for proper cell fate determination and oogenesis. Expression of SNR1 transgenes revealed unexpected roles in wing patterning, abdomen development, oogenesis, and sustained adult viability. A widespread distribution of SNR1 and BRM on the salivary gland polytene chromosomes showed that the Brm complex associated with many genes, but not always at transcribed loci, consistent with genetic data suggesting roles in both gene activation and repression. Despite essential Brm complex functions in leg development, genetic and protein localization studies revealed that snr1 was not required or expressed in all tissues dependent on Brm complex activities. Thus, SNR1 is essential for some, but not all Brm functions, and it likely serves as an optional subunit, directing Brm complex activity to specific gene loci or cellular processes.  相似文献   

3.
4.
5.
The Drosophila melanogaster Brahma (Brm) complex, a counterpart of the Saccharomyces cerevisiae SWI/SNF ATP-dependent chromatin remodeling complex, is important for proper development by maintaining specific gene expression patterns. The SNR1 subunit is strongly conserved with yeast SNF5 and mammalian INI1 and is required for full activity of the Brm complex. We identified a temperature-sensitive allele of snr1 caused by a single amino acid substitution in the conserved repeat 2 region, implicated in a variety of protein-protein interactions. Genetic analyses of snr1(E1) reveal that it functions as an antimorph and that snr1 has critical roles in tissue patterning and growth control. Temperature shifts show that snr1 is continuously required, with essential functions in embryogenesis, pupal stages, and adults. Allele-specific genetic interactions between snr1(E1) and mutations in genes encoding other members of the Brm complex suggest that snr1(E1) mutant phenotypes result from reduced Brm complex function. Consistent with this view, SNR1(E1) is stably associated with other components of the Brm complex at the restrictive temperature. SNR1 can establish direct contacts through the conserved repeat 2 region with the SET domain of the homeotic regulator Trithorax (TRX), and SNR1(E1) is partially defective for functional TRX association. As truncating mutations of INI1 are strongly correlated with aggressive cancers, our results support the view that SNR1, and specifically the repeat 2 region, has a critical role in mediating cell growth control functions of the metazoan SWI/SNF complexes.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Collectively, genes encoding subunits of the SWI/SNF (BAF) chromatin remodeling complex are mutated in 20% of all human cancers, with the SMARCA4 (BRG1) subunit being one of the most frequently mutated. The SWI/SNF complex modulates chromatin remodeling through the activity of two mutually exclusive catalytic subunits, SMARCA4 and SMARCA2 (BRM). Here, we show that a SMARCA2-containing residual SWI/SNF complex underlies the oncogenic activity of SMARCA4 mutant cancers. We demonstrate that a residual SWI/SNF complex exists in SMARCA4 mutant cell lines and plays essential roles in cellular proliferation. Further, using data from loss-of-function screening of 165 cancer cell lines, we identify SMARCA2 as an essential gene in SMARCA4 mutant cancer cell lines. Mechanistically, we reveal that Smarca4 inactivation leads to greater incorporation of the nonessential SMARCA2 subunit into the SWI/SNF complex. Collectively, these results reveal a role for SMARCA2 in oncogenesis caused by SMARCA4 loss and identify the ATPase and bromodomain-containing SMARCA2 as a potential therapeutic target in these cancers.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号