首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic tobacco plants overexpressing single Arabidopsis thaliana cytokinin dehydrogenase (CKX, EC 1.5.99.12) genes AtCKX1, AtCKX2, AtCKX3, AtCKX4, AtCKX5, AtCKX6, and AtCKX7 under the control of a constitutive 35S promoter were tested for CKX-enzymatic activity with varying pH, electron acceptors, and substrates. This comparative analysis showed that out of these, only AtCKX2 and AtCKX4 were highly active enzymes in reaction with isoprenoid cytokinins (N 6 -(2-isopentenyl)adenine (iP), zeatin (Z)) and their ribosides using the artificial electron acceptors 2,6-dichlorophenol indophenol (DCPIP) or 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q0). Turnover rates of these cytokinins by four other AtCKX isoforms (AtCKX1, AtCKX3, AtCKX5, and AtCKX7) were substantially lower, whereas activity of AtCKX6 was almost undetectable. The isoenzymes AtCKX1 and AtCKX7 showed significant preference for cytokinin glycosides, especially N 6 -(2-isopentenyl)adenine 9-glucoside, under weakly acidic conditions. All enzymes preferentially cleave isoprenoid cytokinins in the presence of an electron acceptor, but aromatic cytokinins are not resistant and are degraded with lower reaction rates as well. Cytokinin nucleotides, considered as resistant to CKX attack until now, were found to be potent substrates for some of the CKX isoforms. Substrate specificity of AtCKXs is discussed in this study with respect to the structure of the CKX active site. Further biochemical characterization of the AtCKX1, AtCKX2, AtCKX4 and AtCKX7 enzymes showed pH-dependent activity profiles.  相似文献   

2.
Production of monoclonal antibodies and pharmaceutical proteins in transgenic plants has been the focus of many research efforts for close to 30 years. Use of plants as bioreactors reduces large-scale production costs and minimizes risk for human pathogens contamination. Stable nuclear transformation of the plant genome offers a clear advantage in agricultural protein production platforms, limited only by the number of hectares that can be cultivated. We report here, for the first time, successful and stable expression of adalimumab in transgenic Nicotiana tabacum plants. The plant-derived adalimumab proved fully active and was shown to rescue L929 cells from the in vitro lethal effect of rhTNFα just as effectively as commercially available CHO-derived adalimumab (Humira). These results indicate that agricultural biopharming is an efficient alternative to mammalian cell-based expression platforms for the large-scale production of recombinant antibodies.  相似文献   

3.
4.
5.
6.
Wang H  Liang Q  Cao K  Ge X 《Planta》2011,233(6):1287-1292
Protein mono-ADP-ribosylation post-translationally transfers the ADP-ribose moiety from the β-NAD+ donor to various protein acceptors. This type of modification has been widely characterized and shown to regulate protein activities in animals, yeast and prokaryotes, but has never been reported in plants. In this study, using [32P]NAD+ as the substrate, ADP-ribosylated proteins in Arabidopsis were investigated. One protein substrate of 32 kDa in adult rosette leaves was found to be radiolabeled. Heat treatment, protease sensitivity and nucleotide derivative competition assays suggested a covalent reaction of NAD+ with the 32 kDa protein. [carbonyl-14C]NAD+ could not label the 32 kDa protein, confirming that the modification was ADP-ribosylation. Poly (ADP-ribose) polymerase inhibitor failed to suppress the reaction, but chemicals that destroy mono-ADP-ribosylation on specific amino acid residues could break up the linkage, suggesting that the reaction was not a poly-ADP-ribosylation but rather a mono-ADP-ribosylation. This modification mainly existed in leaves and was enhanced by oxidative stresses. In young seedlings, two more protein substrates with the size of 45 kDa and over 130 kDa, respectively, were observed in addition to the 32 kDa protein, indicating that different proteins were modified at different developmental stages. Although the substrate proteins remain to be identified, this is the first report on the characterization of endogenously mono-ADP-ribosylated proteins in plants.  相似文献   

7.
8.
9.
10.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.  相似文献   

11.
The Nicotiana tabacum transgenic plants expressing a Cucurbita pepo antisense PHYA RNA were obtained. The seedlings of transgenic tobacco with reduced phytochrome A (PHYA) content displayed decreased sensitivity to continuous broad-band far-red radiation (λ > 680 nm). Under far-red irradiance transgenic seedlings showed less elongation of the hypocotyls, more rapid plastid development, more chlorophyll accumulation, less repression of lightdependent NADPH:protochlorophyllide oxidoreductase than wild-type plants that was in accordance with PHYA control of plant development. Dynamics of the far-red radiation dependent changes in low temperature chlorophyll fluorescence spectra for the transgenic and wild-type seedlings were consistent with the more rapid formation of photosynthetic apparatus in the seedlings with reduced PHYA.  相似文献   

12.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

13.
14.
15.
16.
Transgenic Nicotiana tabacum L. cv. SR1 plants, characterized by an increase in the level of dsRNA-specific hydrolytic activity after induction by wounding, were obtained. The Solanum lycopersicum anionic peroxidase gene promoter (new for plant genetic engineering) was for the first time used for the induced expression of the target Serratia marcescens RNase III gene. Upon infection with the tobacco mosaic virus (TMV), the transgenic plants of the obtained lines did not differ significantly from the control group in the level of TMV capsid protein accumulation. In general, no delay in the development of the infection symptoms was observed in transgenic plants as compared with the control group. The obtained transgenic plants represent a new model for the study of the biological role of endoribonucleases from the RNase III family, including in molecular mechanisms of resistance to pathogens.  相似文献   

17.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

18.
Primary transformants of SR1 Nicotiana tabacum plants with RNA interference-based silencing of the gene for extracellular ribonuclease Nk1 were obtained. It was demonstrated that the profiles of ribonuclease activities of leaf protein extracts from these plants lacked ribonuclease with electrophoretic mobility corresponding to that of the Nk1 protein. Primary transformants did not differ phenotypically from control plants. They represent a new model for investigation of the biological role of extracellular ribonucleases, including the molecular mechanisms of resistance to pathogens.  相似文献   

19.
Plant aquaporins are believed to facilitate water transport across cell membranes. However, the relationship between aquaporins and drought resistance in plants remains unclear. VfPIP1, a putative aquaporin gene, was isolated from Vicia faba leaf epidermis, and its expression was induced by abscisic acid (ABA). Our results indicated that the VfPIP1 protein was localized in the plasma membrane, and its expression in V. faba was induced by 20% polyethylene glycol 6000. To further understand the function of VfPIP1, we obtained VfPIP1-expressing transgenic Arabidopsis thaliana plants under the control of the CaMV35S promoter. As compared to the wild-type control plants, the transgenic plants exhibited a faster growth rate, a lower transpiration rate, and greater drought tolerance. In addition, the stomata of the transgenic plants closed significantly faster than those of the control plants under ABA or dark treatment. These results suggest that VfPIP1 expression may improve drought resistance of the transgenic plants by promoting stomatal closure under drought stress.  相似文献   

20.
The first rate-limiting enzyme of the mevalonate pathway during isoprenoid biosynthesis is 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR). In this study, the expression pattern of the MdHMGR2 gene in Malus domestica suggests that MdHMGR2 was expressed in a tissue-specific manner and was significantly induced by ethephon (ETH), indoleacetic acid (IAA), methyl jasmonate (MeJA), and salicylic acid (SA). The MdHMGR2 promoter was isolated, sequenced, and analyzed through bioinformatics tools, and the results suggest the presence of various putative cis-acting elements responsive to different hormones. Activity of β-glucuronidase (GUS) driven by the full length MdHMGR2 promoter and its 5′deletion fragments was detected in transgenic Arabidopsis thaliana. A strong GUS activity was observed in seedlings, roots, newly growing true leaves, anthers, and stigmas in transgenic Arabidopsis containing the full MdHMGR2 promoter. The results indicate that a region from -1050 to -827 was crucial for promoter activity. In addition, the MdHMGR2 promoter was induced in response to ETH, IAA, MeJA, and SA. The analysis suggests that an ethylene-responsive element in the region from -1050 to -1005 was required for the ethylene inducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号